ILT optimization of EUV masks for sub-7nm lithography

极紫外光刻 扫描仪 平版印刷术 材料科学 计算光刻 下一代光刻 浸没式光刻 抵抗 多重图案 静态随机存取存储器 过程(计算) 极端紫外线 光电子学 光刻 电子工程 进程窗口 计算机科学 光学 纳米技术 计算机硬件 物理 工程类 电子束光刻 人工智能 图层(电子) 激光器 操作系统
作者
Kevin Hooker,Kevin Lucas,Bernd Küchler,Aram Kazarian,Guangming Xiao
标识
DOI:10.1117/12.2279912
摘要

The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助zhanng采纳,获得10
刚刚
刚刚
刘厚麟发布了新的文献求助20
1秒前
1秒前
Lucas应助一个小鸡腿采纳,获得10
1秒前
1秒前
英俊的铭应助AI_S采纳,获得10
1秒前
2秒前
2秒前
小俊发布了新的文献求助10
2秒前
bc应助Angel采纳,获得30
2秒前
杨好圆完成签到,获得积分10
2秒前
Xie完成签到,获得积分10
2秒前
Stone发布了新的文献求助10
2秒前
原野小年发布了新的文献求助10
3秒前
一十六发布了新的文献求助10
3秒前
大白牛完成签到,获得积分10
5秒前
叮当喵发布了新的文献求助10
5秒前
lewis17发布了新的文献求助10
5秒前
卢秋宇发布了新的文献求助10
5秒前
6秒前
6秒前
小豆发布了新的文献求助10
6秒前
所所应助伯赏夜南采纳,获得10
6秒前
7秒前
Orange应助冷酷的尔琴采纳,获得10
7秒前
英姑应助从容问雁采纳,获得10
7秒前
7秒前
暖秋发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
原野小年完成签到,获得积分10
9秒前
稳重蜗牛完成签到,获得积分10
9秒前
帅气书白完成签到,获得积分10
10秒前
edtaa发布了新的文献求助10
10秒前
DamonChen发布了新的文献求助10
10秒前
无心的砖家完成签到,获得积分10
10秒前
落后十八发布了新的文献求助20
10秒前
sheep完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836