Multiple Video Frame Interpolation via Enhanced Deformable Separable Convolution

核(代数) 计算机科学 人工智能 卷积(计算机科学) 插值(计算机图形学) 运动插值 计算机视觉 光流 帧(网络) 算法 可分离空间 数学 运动(物理) 视频处理 视频跟踪 图像(数学) 人工神经网络 块匹配算法 电信 组合数学 数学分析
作者
Xianhang Cheng,Zhenzhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (10): 7029-7045 被引量:93
标识
DOI:10.1109/tpami.2021.3100714
摘要

Generating non-existing frames from a consecutive video sequence has been an interesting and challenging problem in the video processing field. Typical kernel-based interpolation methods predict pixels with a single convolution process that convolves source frames with spatially adaptive local kernels, which circumvents the time-consuming, explicit motion estimation in the form of optical flow. However, when scene motion is larger than the pre-defined kernel size, these methods are prone to yield less plausible results. In addition, they cannot directly generate a frame at an arbitrary temporal position because the learned kernels are tied to the midpoint in time between the input frames. In this paper, we try to solve these problems and propose a novel non-flow kernel-based approach that we refer to as enhanced deformable separable convolution (EDSC) to estimate not only adaptive kernels, but also offsets, masks and biases to make the network obtain information from non-local neighborhood. During the learning process, different intermediate time step can be involved as a control variable by means of an extension of coord-conv trick, allowing the estimated components to vary with different input temporal information. This makes our method capable to produce multiple in-between frames. Furthermore, we investigate the relationships between our method and other typical kernel- and flow-based methods. Experimental results show that our method performs favorably against the state-of-the-art methods across a broad range of datasets. Code will be publicly available on URL: https://github.com/Xianhang/EDSC-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rebekah完成签到,获得积分10
1秒前
3秒前
研友_VZG7GZ应助葛顺采纳,获得10
3秒前
5秒前
FashionBoy应助jiasen采纳,获得10
5秒前
5秒前
曾玲萍完成签到 ,获得积分10
6秒前
可爱的函函应助一点采纳,获得10
6秒前
勤劳冥完成签到,获得积分20
7秒前
8秒前
zzh12138发布了新的文献求助10
9秒前
喜悦的向日葵完成签到,获得积分10
9秒前
9秒前
着急的向雁完成签到,获得积分10
9秒前
10秒前
WTJ发布了新的文献求助10
10秒前
YiWei发布了新的文献求助10
10秒前
LYD完成签到,获得积分10
11秒前
11秒前
11秒前
ily.发布了新的文献求助10
11秒前
星星到齐了吗完成签到,获得积分10
11秒前
舒心一兰发布了新的文献求助30
12秒前
12秒前
12秒前
13秒前
酷波er应助一三二五七采纳,获得10
13秒前
刘兴波完成签到 ,获得积分10
13秒前
今后应助文静的新筠采纳,获得10
15秒前
16秒前
maggie发布了新的文献求助10
16秒前
16秒前
酷波er应助言余采纳,获得10
17秒前
17秒前
无忧应助zzh12138采纳,获得10
17秒前
sensensmart发布了新的文献求助10
17秒前
故意姑娘发布了新的文献求助10
17秒前
17秒前
不懈奋进应助正直冰烟采纳,获得30
17秒前
18秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
胶体中的相变和自组装 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071410
求助须知:如何正确求助?哪些是违规求助? 2725386
关于积分的说明 7489586
捐赠科研通 2372678
什么是DOI,文献DOI怎么找? 1258184
科研通“疑难数据库(出版商)”最低求助积分说明 610221
版权声明 596916