基因
生物
遗传学
基因家族
基因复制
非生物胁迫
转录因子
功能(生物学)
串联外显子复制
甘薯
基因表达
植物
作者
Rong Jin,Ho Soo Kim,Tao Yu,Aijun Zhang,Yukui Zhang,Ming Liu,Wenhui Yu,Peng Zhao,Qiangqiang Zhang,Qinghe Cao,Sang‐Soo Kwak,Zhonghou Tang
标识
DOI:10.1016/j.plaphy.2021.11.027
摘要
Basic/helix-loop-helix (bHLH) transcription factors are involved in various metabolic and physiological processes in plants. Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop in China but is highly susceptible to cold stress. However, little information on the bHLH gene family is available, and the function of this family in response to cold stress has not been revealed in sweetpotato. Here, 110 IbbHLHs were identified and classified into 17 categories based on phylogenetic relationships, conserved motifs and gene structure analyses. Except for 5 IbbHLHs, 90 IbbHLHs were putative E-box-binding proteins including 70 IbbHLHs belonging to G-box, whereas 15 IbbHLHs were putative non-E box-binding proteins based on DNA-binding analysis. In total, 37 pairs of segmental duplicated genes and 5 pairs of tandem duplication genes were identified within the IbbHLH gene family. The transcript level of 20 IbbHLHs was regulated by cold stress based on RNA-seq data, and 8 genes were selected for further quantitative real-time PCR (qRT-PCR) analysis. IbHLH8 and IbHLH92 are involved in network interaction with several genes related to abiotic and biotic stresses under cold treatment. IbbHLH79, an ICE1-like gene, was isolated and overexpressed in sweetpotato. The IbbHLH79 protein can activate the CBF (C-repeat Binding Factor) pathway, and IbbHLH79-overexpressing transgenic plants display enhanced cold tolerance. Taken together, these results provide valuable information on the IbbHLH gene family; in addition, several IbbHLHs may regulate cold stress, and the results suggest IbbHLH79 will be useful for molecular breeding of enhanced cold tolerance in sweetpotato.
科研通智能强力驱动
Strongly Powered by AbleSci AI