Clinical metabolomics characteristics of diabetic kidney disease: A meta‐analysis of 1875 cases with diabetic kidney disease and 4503 controls

代谢组学 疾病 医学 糖尿病 代谢物 科克伦图书馆 内科学 荟萃分析 嘧啶代谢 生物信息学 药理学 内分泌学 化学 生物化学 生物 嘌呤
作者
Yu Yuan,Liping Huang,Lulu Yu,Xingxu Yan,Siyu Chen,Chenghao Bi,Junjie He,Yiqing Zhao,Yang Liu,Ning Li,Hua Jin,Rongrong Yang,Yubo Li
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:40 (3): e3789-e3789 被引量:9
标识
DOI:10.1002/dmrr.3789
摘要

Abstract Aims Diabetic Kidney Disease (DKD), one of the major complications of diabetes, is also a major cause of end‐stage renal disease. Metabolomics can provide a unique metabolic profile of the disease and thus predict or diagnose the development of the disease. Therefore, this study summarises a more comprehensive set of clinical biomarkers related to DKD to identify functional metabolites significantly associated with the development of DKD and reveal their driving mechanisms for DKD. Materials and Methods We searched PubMed, Embase, the Cochrane Library and Web of Science databases through October 2022. A meta‐analysis was conducted on untargeted or targeted metabolomics research data based on the strategy of standardized mean differences and the process of ratio of means as the effect size, respectively. We compared the changes in metabolite levels between the DKD patients and the controls and explored the source of heterogeneity through subgroup analyses, sensitivity analysis and meta‐regression analysis. Results The 34 clinical‐based metabolomics studies clarified the differential metabolites between DKD and controls, containing 4503 control subjects and 1875 patients with DKD. The results showed that a total of 60 common differential metabolites were found in both meta‐analyses, of which 5 metabolites ( p < 0.05) were identified as essential metabolites. Compared with the control group, metabolites glycine, aconitic acid, glycolic acid and uracil decreased significantly in DKD patients; cysteine was significantly higher. This indicates that amino acid metabolism, lipid metabolism and pyrimidine metabolism in DKD patients are disordered. Conclusions We have identified 5 metabolites and metabolic pathways related to DKD which can serve as biomarkers or targets for disease prevention and drug therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yin发布了新的文献求助10
刚刚
上官若男应助霸气凝云采纳,获得10
刚刚
淡定秀发完成签到,获得积分10
1秒前
天天快乐应助Anzu采纳,获得10
2秒前
123完成签到,获得积分10
3秒前
xx完成签到 ,获得积分10
4秒前
5秒前
ding应助syyy022采纳,获得20
5秒前
我不喜欢吃蔬菜完成签到 ,获得积分10
6秒前
小乐完成签到,获得积分10
6秒前
lxl220完成签到,获得积分10
6秒前
7秒前
Transition发布了新的文献求助30
10秒前
科研小白完成签到 ,获得积分10
10秒前
Duomo完成签到 ,获得积分10
10秒前
11秒前
nan完成签到,获得积分10
11秒前
Ava应助zxt采纳,获得10
11秒前
12秒前
YANDD完成签到,获得积分10
14秒前
有趣的银完成签到,获得积分10
15秒前
马先森完成签到 ,获得积分10
15秒前
16秒前
syyy022发布了新的文献求助20
16秒前
二饼完成签到,获得积分10
19秒前
忧心的不言完成签到,获得积分10
19秒前
杰尼龟的鱼完成签到 ,获得积分10
20秒前
宋鹏浩发布了新的文献求助30
20秒前
小蘑菇应助墨林采纳,获得10
21秒前
李白白白完成签到,获得积分10
22秒前
22秒前
syyy022完成签到,获得积分10
23秒前
天天快乐应助wangye采纳,获得10
23秒前
ZhaoY完成签到,获得积分10
24秒前
任性山芙完成签到,获得积分10
26秒前
书亚发布了新的文献求助10
26秒前
28秒前
muchen发布了新的文献求助10
30秒前
调皮的蓝天完成签到 ,获得积分10
30秒前
上官若男应助弄香采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688879
关于积分的说明 14856774
捐赠科研通 4696188
什么是DOI,文献DOI怎么找? 2541118
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851