DAHNGC: A Graph Convolution Model for Drug–Disease Association Prediction by Using Heterogeneous Network

计算机科学 图形 卷积(计算机科学) 药品 联想(心理学) 疾病 理论计算机科学 计算生物学 人工智能 医学 生物 内科学 人工神经网络 药理学 心理学 心理治疗师
作者
Jiancheng Zhong,Pan Cui,Yihong Zhu,Qiu Xiao,Zuohang Qu
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:30 (9): 1019-1033
标识
DOI:10.1089/cmb.2023.0135
摘要

In the field of drug development and repositioning, the prediction of drug-disease associations is a critical task. A recently proposed method for predicting drug–disease associations based on graph convolution relies heavily on the features of adjacent nodes within the homogeneous network for characterizing information. However, this method lacks node attribute information from heterogeneous networks, which could hardly provide valuable insights for predicting drug–disease associations. In this study, a novel drug–disease association prediction model called DAHNGC is proposed, which is based on a graph convolutional neural network. This model includes two feature extraction methods that are specifically designed to extract the attribute characteristics of drugs and diseases from both homogeneous and heterogeneous networks. First, the DropEdge technique is added to the graph convolutional neural network to alleviate the oversmoothing problem and obtain the characteristics of the same nodes of drugs or diseases in the homogeneous network. Then, an automatic feature extraction method in the heterogeneous network is designed to obtain the features of drugs or diseases at different nodes. Finally, the obtained features are put into the fully connected network for nonlinear transformation, and the potential drug–disease pairs are obtained by bilinear decoding. Experimental results demonstrate that the DAHNGC model exhibits good predictive performance for drug–disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kourishen发布了新的文献求助10
刚刚
碗碗发布了新的文献求助10
1秒前
ZRDJ发布了新的文献求助10
2秒前
Lucas应助领衔采纳,获得10
3秒前
祈雨的鲸鱼应助wdw2501采纳,获得10
3秒前
3秒前
Theatru完成签到 ,获得积分10
4秒前
临床小白完成签到,获得积分10
4秒前
4秒前
迹K发布了新的文献求助10
4秒前
4秒前
大模型应助山娃子采纳,获得10
4秒前
5秒前
5秒前
huohuo143完成签到,获得积分10
5秒前
佳足完成签到,获得积分10
7秒前
天天快乐应助smiles采纳,获得10
7秒前
搞怪千琴发布了新的文献求助30
8秒前
8秒前
优雅涔雨发布了新的文献求助10
8秒前
cocolu应助大白采纳,获得10
9秒前
美丽稀发布了新的文献求助150
9秒前
佳足发布了新的文献求助10
9秒前
10秒前
谢安发布了新的文献求助10
10秒前
limit发布了新的文献求助10
11秒前
飞快的雨琴完成签到,获得积分20
11秒前
12秒前
12秒前
SYLH应助blablawindy采纳,获得10
12秒前
13秒前
14秒前
zjsu_zpz发布了新的文献求助10
14秒前
14秒前
宝安发布了新的文献求助10
14秒前
打打应助zyw采纳,获得10
15秒前
猪猪hero发布了新的文献求助10
16秒前
Liiii完成签到,获得积分10
16秒前
欢喜涫关注了科研通微信公众号
16秒前
明凡发布了新的文献求助10
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470653
求助须知:如何正确求助?哪些是违规求助? 3063626
关于积分的说明 9084762
捐赠科研通 2754142
什么是DOI,文献DOI怎么找? 1511256
邀请新用户注册赠送积分活动 698359
科研通“疑难数据库(出版商)”最低求助积分说明 698253