Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins

判别式 相关系数 相关性 特征选择 皮尔逊积矩相关系数 支持向量机 计算机科学 生物系统 人工智能 机器学习 模式识别(心理学) 数学 统计 生物 几何学
作者
Hongliang Zou,Wanting Yu
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:30 (10): 1131-1143 被引量:2
标识
DOI:10.1089/cmb.2022.0237
摘要

Phage virion proteins (PVPs) play an important role in the host cell. Fast and accurate identification of PVPs is beneficial for the discovery and development of related drugs. Although wet experimental approaches are the first choice to identify PVPs, they are costly and time-consuming. Thus, researchers have turned their attention to computational models, which can speed up related studies. Therefore, we proposed a novel machine-learning model to identify PVPs in the current study. First, 50 different types of physicochemical properties were used to denote protein sequences. Next, two different approaches, including Pearson's correlation coefficient (PCC) and maximal information coefficient (MIC), were employed to extract discriminative information. Further, to capture the high-order correlation information, we used PCC and MIC once again. After that, we adopted the least absolute shrinkage and selection operator algorithm to select the optimal feature subset. Finally, these chosen features were fed into a support vector machine to discriminate PVPs from phage non-virion proteins. We performed experiments on two different datasets to validate the effectiveness of our proposed method. Experimental results showed a significant improvement in performance compared with state-of-the-art approaches. It indicates that the proposed computational model may become a powerful predictor in identifying PVPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇宛发布了新的文献求助10
2秒前
好事成双完成签到,获得积分10
3秒前
3秒前
lwtsy发布了新的文献求助10
4秒前
wangyy65关注了科研通微信公众号
4秒前
Hello应助合适的灵枫采纳,获得10
7秒前
8秒前
10秒前
11秒前
风格和完成签到,获得积分10
11秒前
orixero应助围城采纳,获得10
12秒前
12秒前
朝朝发布了新的文献求助10
14秒前
手机应助派大星采纳,获得20
15秒前
16秒前
轻松的化蛹完成签到,获得积分10
16秒前
发疯的游子完成签到 ,获得积分10
17秒前
Quinta发布了新的文献求助10
17秒前
17秒前
bkagyin应助科研通管家采纳,获得20
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
dongsheng应助科研通管家采纳,获得10
17秒前
昏睡的绍辉完成签到,获得积分10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
18秒前
林巧完成签到 ,获得积分10
18秒前
CipherSage应助dnicly采纳,获得10
18秒前
可爱的函函应助dnicly采纳,获得10
18秒前
wangyy65发布了新的文献求助10
19秒前
淡淡菠萝发布了新的文献求助10
19秒前
22秒前
23秒前
科研通AI2S应助XHT采纳,获得10
23秒前
26秒前
Cecilia完成签到,获得积分10
26秒前
yar完成签到,获得积分0
28秒前
天气真好发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329457
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594359
捐赠科研通 2637590
什么是DOI,文献DOI怎么找? 1443651
科研通“疑难数据库(出版商)”最低求助积分说明 668775
邀请新用户注册赠送积分活动 656220