Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins

判别式 相关系数 相关性 特征选择 皮尔逊积矩相关系数 支持向量机 计算机科学 生物系统 人工智能 机器学习 模式识别(心理学) 数学 统计 生物 几何学
作者
Hongliang Zou,Wanting Yu
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:30 (10): 1131-1143 被引量:2
标识
DOI:10.1089/cmb.2022.0237
摘要

Phage virion proteins (PVPs) play an important role in the host cell. Fast and accurate identification of PVPs is beneficial for the discovery and development of related drugs. Although wet experimental approaches are the first choice to identify PVPs, they are costly and time-consuming. Thus, researchers have turned their attention to computational models, which can speed up related studies. Therefore, we proposed a novel machine-learning model to identify PVPs in the current study. First, 50 different types of physicochemical properties were used to denote protein sequences. Next, two different approaches, including Pearson's correlation coefficient (PCC) and maximal information coefficient (MIC), were employed to extract discriminative information. Further, to capture the high-order correlation information, we used PCC and MIC once again. After that, we adopted the least absolute shrinkage and selection operator algorithm to select the optimal feature subset. Finally, these chosen features were fed into a support vector machine to discriminate PVPs from phage non-virion proteins. We performed experiments on two different datasets to validate the effectiveness of our proposed method. Experimental results showed a significant improvement in performance compared with state-of-the-art approaches. It indicates that the proposed computational model may become a powerful predictor in identifying PVPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
agui完成签到 ,获得积分10
1秒前
jt发布了新的文献求助10
1秒前
lluo完成签到 ,获得积分10
2秒前
3秒前
充电宝应助香蕉鸽子采纳,获得10
3秒前
Momo完成签到,获得积分10
4秒前
4秒前
开朗满天完成签到,获得积分10
8秒前
8秒前
mint发布了新的文献求助10
8秒前
fanli发布了新的文献求助10
9秒前
啦啦啦发布了新的文献求助20
11秒前
牛牛眉目发布了新的文献求助10
12秒前
英俊的铭应助顺利的白山采纳,获得10
14秒前
Owen应助科研鸟采纳,获得10
14秒前
yyawkx完成签到,获得积分10
15秒前
葡萄完成签到,获得积分10
16秒前
16秒前
16秒前
酷波er应助dawang采纳,获得10
17秒前
Yan完成签到 ,获得积分10
17秒前
18秒前
19秒前
519611521发布了新的文献求助10
20秒前
三个哈卡完成签到,获得积分10
21秒前
BILNQPL发布了新的文献求助10
22秒前
22秒前
老大蒂亚戈完成签到,获得积分10
23秒前
lslslslsllss发布了新的文献求助20
23秒前
24秒前
wpz完成签到,获得积分10
24秒前
25秒前
饱满秋发布了新的文献求助30
25秒前
666应助鱼咬羊采纳,获得10
27秒前
yynfyy发布了新的文献求助10
27秒前
kkkkkk发布了新的文献求助10
28秒前
666应助Farr采纳,获得10
28秒前
隐形曼青应助BILNQPL采纳,获得10
28秒前
一叶知秋完成签到,获得积分10
30秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374