Deriving Explainable Metrics of Left Ventricular Flow by Reduced-Order Modeling and Classification

人工智能 流量(数学) 矢量流 判别式 计算机科学 模式识别(心理学) 心脏病学 医学 数学 图像(数学) 几何学 图像分割
作者
Maria Guadalupe Borja,Pablo Martínez‐Legazpi,Cathleen Nguyen,Oscar Flores,Andrew Kahn,Javier Bermejo,Juan Carlos del Álamo
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2023.10.03.23296524
摘要

ABSTRACT Background Extracting explainable flow metrics is a bottleneck to the clinical translation of advanced cardiac flow imaging modalities. We hypothesized that reduced-order models (ROMs) of intraventricular flow are a suitable strategy for deriving simple and interpretable clinical metrics suitable for further assessments. Combined with machine learning (ML) flow-based ROMs could provide new insight to help diagnose and risk-stratify patients. Methods We analyzed 2D color-Doppler echocardiograms of 81 non-ischemic dilated cardiomyopathy (DCM) patients, 51 hypertrophic cardiomyopathy (HCM) patients, and 77 normal volunteers (Control). We applied proper orthogonal decomposition (POD) to build patient-specific and cohort-specific ROMs of LV flow. Each ROM aggregates a low number of components representing a spatially dependent velocity map modulated along the cardiac cycle by a time-dependent coefficient. We tested three classifiers using deliberately simple ML analyses of these ROMs with varying supervision levels. In supervised models, hyperparameter gridsearch was used to derive the ROMs that maximize classification power. The classifiers were blinded to LV chamber geometry and function. We ran vector flow mapping on the color-Doppler sequences to help visualize flow patterns and interpret the ML results. Results POD-based ROMs stably represented each cohort through 10-fold cross-validation. The principal POD mode captured >80% of the flow kinetic energy (KE) in all cohorts and represented the LV filling/emptying jets. Mode 2 represented the diastolic vortex and its KE contribution ranged from <1% (HCM) to 13% (DCM). Semi-unsupervised classification using patient-specific ROMs revealed that the KE ratio of these two principal modes, the vortex-to-jet (V2J) energy ratio, is a simple, interpretable metric that discriminates DCM, HCM, and Control patients. Receiver operating characteristic curves using V2J as classifier had areas under the curve of 0.81, 0.91, and 0.95 for distinguishing HCM vs. Control, DCM vs. Control, and DCM vs. HCM, respectively. Conclusions Modal decomposition of cardiac flow can be used to create ROMs of normal and pathological flow patterns, uncovering simple interpretable flow metrics with power to discriminate disease states, and particularly suitable for further processing using ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h4ra1n完成签到,获得积分10
刚刚
大模型应助彩色的沛白采纳,获得30
刚刚
刚刚
梓歆发布了新的文献求助10
1秒前
wxy完成签到,获得积分10
1秒前
wanci应助哈哈哈采纳,获得10
2秒前
不吃辣活不了完成签到,获得积分10
2秒前
JMao完成签到,获得积分10
2秒前
2秒前
曾经的苑博完成签到,获得积分10
2秒前
佰斯特威应助sherry221采纳,获得10
2秒前
3秒前
Alisa发布了新的文献求助10
3秒前
Owen应助宇与鱼采纳,获得10
3秒前
独特斩完成签到,获得积分10
3秒前
4秒前
4秒前
yulongmin发布了新的文献求助10
4秒前
畅快蓝血完成签到,获得积分10
5秒前
5秒前
赵赵赵发布了新的文献求助10
5秒前
5秒前
小白应助qiqishao采纳,获得10
5秒前
金容完成签到,获得积分10
6秒前
逃跑的炸鸡完成签到 ,获得积分10
6秒前
7秒前
Zll完成签到,获得积分10
7秒前
A爷有特点完成签到 ,获得积分10
8秒前
8秒前
林林发布了新的文献求助10
9秒前
深情安青应助meimei采纳,获得30
9秒前
angelinazh发布了新的文献求助30
9秒前
甜美三娘发布了新的文献求助10
9秒前
独特的莫言完成签到,获得积分10
9秒前
10秒前
小叮当发布了新的文献求助30
11秒前
科研通AI5应助反差小猴采纳,获得10
11秒前
JohanXu完成签到,获得积分10
12秒前
畅快蓝血发布了新的文献求助10
12秒前
BIN发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755562
求助须知:如何正确求助?哪些是违规求助? 3298696
关于积分的说明 10106720
捐赠科研通 3013351
什么是DOI,文献DOI怎么找? 1655100
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286