已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Iterative Classification and Semantic Segmentation Network for Old Landslide Detection Using High-Resolution Remote Sensing Images

计算机科学 分割 人工智能 模式识别(心理学) 特征提取 图像分割 对象(语法) 目标检测 像素 山崩 任务(项目管理) 特征(语言学) 语义学(计算机科学) 遥感 地质学 语言学 哲学 岩土工程 管理 经济 程序设计语言
作者
Zili Lu,Yuexing Peng,Wei Li,Junchuan Yu,Daqing Ge,Lingyi Han,Wei Xiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:11
标识
DOI:10.1109/tgrs.2023.3313586
摘要

The geological characteristics of old landslides can provide crucial information for the task of landslide protection. However, detecting old landslides from high-resolution remote sensing images (HRSIs) is of great challenges due to their partially or strongly transformed morphology over a long time and thus the limited difference with their surroundings. Additionally, small-sized datasets can restrict in-depth learning. To address these challenges, this paper proposes a new iterative classification and semantic segmentation network (ICSSN), which can significantly improve both object-level and pixel-level classification performance by iteratively upgrading the feature extraction module shared by the object classification and semantic segmentation networks. To improve the detection performance on small-sized datasets, object-level contrastive learning is employed in the object classification network featuring a siamese network to realize global features extraction, and a sub-object-level contrastive learning method is designed in the semantic segmentation network to efficiently extract salient features from boundaries of landslides. An iterative training strategy is also proposed to fuse features in the semantic space, further improving both the object-level and pixel-level classification performances. The proposed ICSSN is evaluated on a real-world landslide dataset, and experimental results show that it greatly improves both the classification and segmentation accuracy of old landslides. For the semantic segmentation task, compared to the baseline, the F1 score increases from 0.5054 to 0.5448, the mIoU improves from 0.6405 to 0.6610, the landslide IoU grows from 0.3381 to 0.3743, the PA is improved from 0.945 to 0.949, and the object-level detection accuracy of old landslides surges from 0.55 to 0.90. For the object classification task, the F1 score increases from 0.8846 to 0.9230, and the accuracy score is up from 0.8375 to 0.8875.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Chan完成签到,获得积分10
7秒前
碳酸芙兰完成签到,获得积分10
8秒前
耍酷发布了新的文献求助10
10秒前
11秒前
直率奇迹完成签到 ,获得积分10
15秒前
15秒前
若滢似雪发布了新的文献求助10
17秒前
酷酷的王完成签到 ,获得积分10
18秒前
onestepcloser完成签到 ,获得积分10
19秒前
20秒前
舒心青旋关注了科研通微信公众号
22秒前
冷裤de工头完成签到,获得积分20
22秒前
若滢似雪完成签到,获得积分10
28秒前
。。发布了新的文献求助10
33秒前
汤万天完成签到,获得积分10
34秒前
完美世界应助蓝色天空采纳,获得10
34秒前
舒心青旋发布了新的文献求助100
38秒前
39秒前
丿夜幕灬降临丨完成签到,获得积分10
42秒前
43秒前
grs完成签到 ,获得积分10
44秒前
44秒前
Nacy发布了新的文献求助10
45秒前
mywyj发布了新的文献求助10
46秒前
47秒前
47秒前
。。完成签到,获得积分10
49秒前
49秒前
蓝色天空发布了新的文献求助10
50秒前
50秒前
52秒前
充电宝应助mywyj采纳,获得10
52秒前
52秒前
54秒前
dd完成签到 ,获得积分10
55秒前
55秒前
57秒前
57秒前
爱撒娇的酸奶完成签到,获得积分10
59秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265391
求助须知:如何正确求助?哪些是违规求助? 2905440
关于积分的说明 8333810
捐赠科研通 2575728
什么是DOI,文献DOI怎么找? 1400103
科研通“疑难数据库(出版商)”最低求助积分说明 654693
邀请新用户注册赠送积分活动 633509