Accuracy improvement of laser-induced breakdown spectroscopy coal analysis by hybrid transfer learning

人工神经网络 训练集 样品(材料) 学习迁移 计算机科学 领域(数学分析) 集合(抽象数据类型) 人工智能 激光诱导击穿光谱 时域 模式识别(心理学) 机器学习 生物系统 激光器 化学 数学 色谱法 计算机视觉 光学 物理 数学分析 生物 程序设计语言
作者
Ji Chen,Wenhao Yan,Lizhu Kang,Bing Lu,Ke Liu,Xiangyou Li
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:15 (39): 5157-5165 被引量:5
标识
DOI:10.1039/d3ay01380d
摘要

Laser-induced breakdown spectroscopy (LIBS) has been applied in coal analysis for advantages such as real-time online analysis. Fine-tuning is a transfer learning method that has been utilized in LIBS to improve accuracy in the target domain with a limited training set by introducing a model trained on a different but related source domain. This research proposed a hybrid transfer learning method (HTr-LIBS) to further enhance the performance of LIBS coal analysis by combining fine-tuning with sample reweighting. A neural network was pre-trained on the source domain and target domain training set. The sample weights of the source domain were iteratively adjusted according to the prediction errors. The pre-trained neural network with optimal sample weights was then fine-tuned using the target domain training set. The proposed method significantly improved the analytical accuracy compared to direct modeling using small training sets. When the training set size increased to 19, the R2P of direct modeling for ash content and volatile matter content were 0.8105 and 0.9440, respectively. HTr-LIBS increased the R2P for ash content and volatile matter content to 0.9029 and 0.9627, respectively. The improvements were more significant and stable than fine-tuning of the source domain model without sample reweighting. The introduction of target domain data during pre-training and the iterative adjustment of sample weights both contributed to the improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdl120318发布了新的文献求助10
刚刚
kobiy完成签到 ,获得积分10
1秒前
2秒前
yxm完成签到 ,获得积分10
3秒前
ZXH完成签到,获得积分10
5秒前
fengfenghao完成签到,获得积分10
6秒前
8秒前
9秒前
香菜完成签到,获得积分10
10秒前
11秒前
一一发布了新的文献求助10
13秒前
吡咯爱成环应助拓跋涵易采纳,获得10
15秒前
ZL发布了新的文献求助10
15秒前
忧心的白开水完成签到,获得积分20
15秒前
uupp完成签到,获得积分10
15秒前
中国女孩发布了新的文献求助10
17秒前
在水一方应助edtaa采纳,获得10
17秒前
17秒前
小苦瓜完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
绝味大姨发布了新的文献求助10
22秒前
24秒前
不配.应助LoLo采纳,获得10
24秒前
25秒前
小乌龟完成签到 ,获得积分10
29秒前
cdercder应助中国女孩采纳,获得10
31秒前
sir完成签到,获得积分10
36秒前
37秒前
42秒前
Dobby完成签到,获得积分10
42秒前
44秒前
上官若男应助谷安采纳,获得10
44秒前
清脆不乐发布了新的文献求助10
44秒前
大个应助YYL采纳,获得10
50秒前
53秒前
55秒前
左左右右完成签到 ,获得积分10
57秒前
谷安发布了新的文献求助10
59秒前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Eddy current canonical problems (with applications to nondestructive evaluation) 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372076
求助须知:如何正确求助?哪些是违规求助? 2989982
关于积分的说明 8738053
捐赠科研通 2673316
什么是DOI,文献DOI怎么找? 1464421
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668893