YOLOv5s-DNF: A lighter and real-time method for detecting surface defects in steel

过度拟合 卷积(计算机科学) 计算机科学 代表(政治) 算法 矩形 特征(语言学) 曲面(拓扑) 一般化 人工智能 模式识别(心理学) 人工神经网络 数学 数学分析 语言学 哲学 几何学 政治 政治学 法学
作者
Hao Ding,Bo Xia
标识
DOI:10.1109/cvidl58838.2023.10166850
摘要

Defect detection plays a crucial role in ensuring the surface quality of steel, as it impacts both downstream production and the overall quality of the final product. However, recognizing surface defects in steel has always been challenging due to the small occurrence area, diverse types of deformations, and various types of defects. In this article, we propose a novel lightweight defect detection model named YOLOv5s-DNF, which achieves high detection performance while maintaining a lightweight architecture. Specifically, we enhance the C3 structure in YOLOv5 by incorporating the Deformable Convolution Network v3 (DCNv3) operator, referred to as C3-Dcnv3. This modification effectively addresses the limitations of fixed rectangle structure sampling, enhancing the network's ability to model object deformations. Furthermore, we introduce the Normalized Wasserstein Distance (NWD) to the loss function, improving the model's feature representation and regularization, thereby mitigating overfitting and enhancing generalization ability. In addition, we propose the C3-Faster structure by integrating partial convolution (PConv) into the C3 structure, which reduces the model's parameter count and computational complexity while minimizing precision loss. The proposed YOLOv5s-DNF model is evaluated on the NEU-DET dataset, and the experimental results demonstrate that it achieves a desirable balance between accuracy and parameter efficiency, outperforming other state-of-the-art methods. Furthermore, we conduct additional experiments on the publicly available Wood Surface Defects dataset, further validating the effectiveness of our proposed model. Various experiments have shown that YOLOv5s-DNF achieves a better trade-off between running speed and detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mang_er发布了新的文献求助10
1秒前
zhan关注了科研通微信公众号
1秒前
陶醉白凡发布了新的文献求助10
1秒前
xyf完成签到,获得积分10
2秒前
zzs完成签到,获得积分10
3秒前
ever完成签到,获得积分10
4秒前
Tom哥完成签到,获得积分10
4秒前
zzs发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
glowworm完成签到 ,获得积分10
9秒前
spp发布了新的文献求助10
10秒前
半只小羊完成签到 ,获得积分10
10秒前
传奇3应助轻松龙猫采纳,获得10
10秒前
汉堡包应助莫愁采纳,获得10
10秒前
skyangar发布了新的文献求助10
11秒前
JoyChu完成签到,获得积分10
11秒前
激昂的逊发布了新的文献求助10
11秒前
11秒前
早岁发布了新的文献求助10
13秒前
Yz完成签到 ,获得积分10
13秒前
15秒前
guy完成签到,获得积分10
15秒前
15秒前
15秒前
233完成签到 ,获得积分10
16秒前
充电宝应助断刃采纳,获得10
17秒前
李爱国应助zwenng采纳,获得10
17秒前
潇洒万仇发布了新的文献求助10
18秒前
小余发布了新的文献求助10
19秒前
可爱的函函应助zzs采纳,获得10
19秒前
20秒前
21秒前
张华发布了新的文献求助50
21秒前
充电宝应助PL15采纳,获得10
22秒前
23秒前
HEIKU应助松鼠爱学习采纳,获得10
23秒前
kyt_tt完成签到,获得积分10
23秒前
深情安青应助xuezhao采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3582022
求助须知:如何正确求助?哪些是违规求助? 3151548
关于积分的说明 9488290
捐赠科研通 2853711
什么是DOI,文献DOI怎么找? 1568809
邀请新用户注册赠送积分活动 734810
科研通“疑难数据库(出版商)”最低求助积分说明 720809