Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA

肌内脂肪 生物 NEFA公司 基因 转录组 鉴定(生物学) 肉牛 代谢组 生物技术 脂肪酸 计算生物学 食品科学 遗传学 代谢组学 生物信息学 生物化学 基因表达 植物
作者
Hengwei Yu,Zhimei Yang,Jianfang Wang,Huaxuan Li,Xuefeng Li,E. Liang,Chugang Mei,Linsen Zan
出处
期刊:Journal of Integrative Agriculture [Elsevier]
卷期号:23 (11): 3923-3937
标识
DOI:10.1016/j.jia.2024.07.044
摘要

Understanding the genetic and metabolic elements that impact the quality of meat is crucial in order to improve production and satisfy consumer demands in the beef sector. Differences in meat quality among various muscle areas in beef cattle can impact pricing in the market. Despite progress in genomics, the specific genes and metabolites that affect meat quality characteristics in Qinchuan cattle remain inadequately understood. Therefore, this study aimed to evaluate the meat quality characteristics of four specific muscle locations (tenderloin, striploin, high rib and ribeye muscles) in Qinchuan bulls, including ten traits (total protein content (TPC), intramuscular fat (IMF), non-esterified fatty acid (NEFA), meat color (L*, a* and b*), shear force (SF), cooking loss (CL), pH0 and pH24). In this experiment, transcriptome, metabolome sequencing, and sophisticated analytical methodologies such as weighted gene co-expression network analysis (WGCNA) and protein-protein interaction networks (PPI) were used to identify the key genes and metabolites associated with specific traits. The findings highlighted three notable genes (NDUFAB1, NDUFA12, and NDUFB7) linked to intramuscular fat (IMF), three key genes (CSRP3, ACAA3, ACADVL) correlated with non-esterified fatty acids (NEFA), and one crucial gene (CREBBP) influencing meat color. In conclusion, this investigation offers a new perspective on the differences in bovine muscle locations and contributes to the molecular understanding of bovine meat quality. Future research endeavors could delve deeper into the identified genes and pathways to enhance both the quality and yield of beef cattle.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助蝶步韶华采纳,获得10
1秒前
1秒前
大白完成签到,获得积分10
1秒前
Ester完成签到 ,获得积分20
3秒前
嗯哼应助minmin采纳,获得20
5秒前
如此纠结完成签到,获得积分10
6秒前
Orange应助吴未采纳,获得10
7秒前
9秒前
10秒前
大模型应助咕咕呱采纳,获得10
10秒前
蝶步韶华发布了新的文献求助10
12秒前
14秒前
15秒前
17秒前
lalalala发布了新的文献求助10
18秒前
18秒前
18秒前
yifanchen完成签到,获得积分10
20秒前
20秒前
田様应助健康的绮南采纳,获得10
21秒前
郑总完成签到 ,获得积分10
21秒前
22秒前
22秒前
夏哈哈完成签到 ,获得积分10
23秒前
yifanchen发布了新的文献求助10
23秒前
24秒前
1Aaa发布了新的文献求助10
25秒前
Lucas应助唐僧洗头用飘柔采纳,获得10
25秒前
27秒前
吴未发布了新的文献求助10
27秒前
英姑应助qifunongsuo1213采纳,获得10
27秒前
搜集达人应助云里采纳,获得10
28秒前
坚定的小海豚完成签到,获得积分10
29秒前
zho应助psy学子采纳,获得30
30秒前
小吕小吕发布了新的文献求助10
30秒前
Sir.夏季风发布了新的文献求助10
31秒前
31秒前
34秒前
酷波er应助XXX采纳,获得10
35秒前
35秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387255
求助须知:如何正确求助?哪些是违规求助? 3000118
关于积分的说明 8789340
捐赠科研通 2685905
什么是DOI,文献DOI怎么找? 1471378
科研通“疑难数据库(出版商)”最低求助积分说明 680208
邀请新用户注册赠送积分活动 672982