ADT‐UNet: An Innovative Algorithm for Glioma Segmentation in MR Images

计算机科学 分割 算法 人工智能
作者
Zhipeng Liu,Jiawei Wu,Jingkai Ye,Xuefeng Bian,Wu Qiwei,R. B. Li,Yinxing Zhu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23150
摘要

ABSTRACT The precise delineation of glioma tumors is of paramount importance for surgical and radiotherapy planning. Presently, the primary drawbacks associated with the manual segmentation approach are its laboriousness and inefficiency. In order to tackle these challenges, a deep learning‐based automatic segmentation technique was introduced to enhance the efficiency of the segmentation process. We proposed ADT‐UNet, an innovative algorithm for segmenting glioma tumors in MR images. ADT‐UNet leveraged attention‐dense blocks and Transformer as its foundational elements. It extended the U‐Net framework by incorporating the dense connection structure and attention mechanism. Additionally, a Transformer structure was introduced at the end of the encoder. Furthermore, a novel attention‐guided multi‐scale feature fusion module was integrated into the decoder. To enhance network stability during training, a loss function was devised that combines Dice loss and binary cross‐entropy loss, effectively guiding the network optimization process. On the test set, the DSC was 0.933, the IOU was 0.878, the PPV was 0.942, and the Sen was 0.938. Ablation experiments conclusively demonstrated that the inclusion of all the three proposed modules led to enhanced segmentation accuracy within the model. The most favorable outcomes were observed when all the three modules were employed simultaneously. The proposed methodology exhibited substantial competitiveness across various evaluation indices, with the three additional modules synergistically complementing each other to collectively enhance the segmentation accuracy of the model. Consequently, it is anticipated that this method will serve as a robust tool for assisting clinicians in auxiliary diagnosis and contribute to the advancement of medical intelligence technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pana完成签到,获得积分10
刚刚
刘小天发布了新的文献求助10
1秒前
1秒前
小蟹发布了新的文献求助30
2秒前
3秒前
3秒前
是我呀小夏完成签到 ,获得积分10
5秒前
小蘑菇应助xu采纳,获得10
5秒前
6秒前
7秒前
传奇3应助幽默的寒蕾采纳,获得10
9秒前
sheep发布了新的文献求助10
9秒前
蔺不平发布了新的文献求助10
10秒前
青衣完成签到,获得积分10
10秒前
YY发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
hui完成签到,获得积分10
15秒前
小黄发布了新的文献求助10
16秒前
科研通AI2S应助chemlixy采纳,获得10
16秒前
张嘟嘟完成签到,获得积分10
18秒前
18秒前
nicole完成签到,获得积分10
18秒前
xu发布了新的文献求助10
18秒前
ljy2015完成签到,获得积分10
19秒前
斌斌发布了新的文献求助10
19秒前
王小西完成签到,获得积分10
19秒前
20秒前
20秒前
YY发布了新的文献求助20
21秒前
旅顺口老李完成签到 ,获得积分10
23秒前
24秒前
hyaoooo完成签到 ,获得积分10
24秒前
24秒前
内向耷关注了科研通微信公众号
25秒前
惜曦完成签到 ,获得积分10
25秒前
浩浩浩完成签到,获得积分10
26秒前
123完成签到,获得积分10
26秒前
年华完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175