MetMiner: A user‐friendly pipeline for large‐scale plant metabolomics data analysis

计算机科学 代谢组学 管道(软件) 数据挖掘 稳健性(进化) 代谢组 数据科学 生物信息学 生物 生物化学 基因 程序设计语言
作者
Xiao Wang,Shuang Liang,Wenqi Yang,Ke Yu,Fei Liang,Bing Zhao,Xiang Zhu,Chao Zhou,Luis A. J. Mur,Jeremy A. Roberts,Junli Zhang,Xuebin Zhang
出处
期刊:Journal of Integrative Plant Biology [Wiley]
被引量:1
标识
DOI:10.1111/jipb.13774
摘要

ABSTRACT The utilization of metabolomics approaches to explore the metabolic mechanisms underlying plant fitness and adaptation to dynamic environments is growing, highlighting the need for an efficient and user‐friendly toolkit tailored for analyzing the extensive datasets generated by metabolomics studies. Current protocols for metabolome data analysis often struggle with handling large‐scale datasets or require programming skills. To address this, we present MetMiner ( https://github.com/ShawnWx2019/MetMiner ), a user‐friendly, full‐functionality pipeline specifically designed for plant metabolomics data analysis. Built on R shiny, MetMiner can be deployed on servers to utilize additional computational resources for processing large‐scale datasets. MetMiner ensures transparency, traceability, and reproducibility throughout the analytical process. Its intuitive interface provides robust data interaction and graphical capabilities, enabling users without prior programming skills to engage deeply in data analysis. Additionally, we constructed and integrated a plant‐specific mass spectrometry database into the MetMiner pipeline to optimize metabolite annotation. We have also developed MDAtoolkits, which include a complete set of tools for statistical analysis, metabolite classification, and enrichment analysis, to facilitate the mining of biological meaning from the datasets. Moreover, we propose an iterative weighted gene co‐expression network analysis strategy for efficient biomarker metabolite screening in large‐scale metabolomics data mining. In two case studies, we validated MetMiner's efficiency in data mining and robustness in metabolite annotation. Together, the MetMiner pipeline represents a promising solution for plant metabolomics analysis, providing a valuable tool for the scientific community to use with ease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一人摩羯完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
3秒前
rt三角发布了新的文献求助10
3秒前
嘉心糖应助简隋英采纳,获得20
4秒前
4秒前
4秒前
4秒前
ya完成签到,获得积分10
4秒前
董云云发布了新的文献求助10
4秒前
麻辣小龙虾完成签到,获得积分10
5秒前
爱听歌寄云完成签到 ,获得积分10
5秒前
Michael发布了新的文献求助20
5秒前
NexusExplorer应助小毕可乐采纳,获得10
5秒前
zency发布了新的文献求助10
6秒前
dzjin发布了新的文献求助10
6秒前
7秒前
enen发布了新的文献求助10
7秒前
7秒前
杨小野发布了新的文献求助10
7秒前
7秒前
weeklywh发布了新的文献求助10
8秒前
机灵的白羊完成签到 ,获得积分10
8秒前
活泼的莹完成签到,获得积分10
9秒前
天天扫大街完成签到,获得积分10
9秒前
9秒前
10秒前
瞿寒发布了新的文献求助10
10秒前
10秒前
Monicadd完成签到,获得积分10
10秒前
小马同志完成签到,获得积分10
11秒前
小阿俊发布了新的文献求助10
11秒前
韦小艺发布了新的文献求助10
12秒前
爱听歌的依秋完成签到,获得积分10
12秒前
希望天下0贩的0应助成太采纳,获得10
12秒前
yefeng发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648