Grazing regimes alter the fate of 15N‐labeled urea in a temperate steppe

放牧 温带气候 尿素 草原 化学 动物科学 农学 生物 生态学 生物化学
作者
Yuqiang Tian,Ruixue Wang,Yan Zhao,Xiaoxia Chen,Xiaobing Li,Taogetao Baoyin,Zhaowen Su,Shengnan Ouyang
出处
期刊:Land Degradation & Development [Wiley]
标识
DOI:10.1002/ldr.5233
摘要

Abstract Clarifying the fate of different nitrogen (N) species in different pools of terrestrial ecosystems is a prerequisite for a comprehensive understanding of the influence of human activities on the N cycle. Grazing has always been an important way of grassland management for centuries in the temperate grasslands of North China. However, how grazing regimes affect the N fate of urea derived from the livestock in the plant–soil systems of grazed grasslands remains poorly understood. Therefore, an in situ three‐factor (grazing regime, soil depth, and sampling time) 15 N‐labeling experiment in a temperate steppe was conducted to answer this question. After 48 days of 15 N labeling, the 15 N recovered in shoots under no grazing (7.3% ± 1.8%) was approximately 2.3 times of that under rotational (3.2% ± 0.4%) and 2.5 times of that under continuous overgrazing (2.9% ± 0.5%). More 15 N was recovered in roots under rotational than continuous overgrazing (19.8% ± 2.4% vs. 10.4% ± 0.5%, respectively), indicating that rotational overgrazing could promote more N retention in the roots. However, the 15 N recovered in the soil was lower under continuous (23.7% ± 2.0%) than that of no grazing (42.0% ± 5.6%). Additionally, overgrazing reduced the magnitude of the soil active N pool in microbial biomass N and soluble N relative to no grazing. The grazing regimes would have significantly influenced both the soil and plants. That is to say, grazing regimes have directly impacted plant growth, and subsequently indirectly affected soil properties. Overgrazing often led to excessive vegetation consumption, resulting in decreased soil water content (SWC) and reduced soil organic carbon (SOC), ultimately caused alterations in plant species composition. The retention of 15 N within the plant–soil system under continuous overgrazing was notably lower compared to that of no grazing. Continuous overgrazing has led to a shift in the dominant plant species from Leymus chinensis to Stipa grandis , by decreasing the proportion of perennial grasses by 10%, and increasing the annual and biennial plants by 8%. The fate of 15 N was also altered in response to the variations in grazing regimes. Consequently, the recovery of 15 N within the plant–soil system under continuous overgrazing was significantly lower compared to that of no grazing. In conclusion, overgrazing reduces the recovery of 15 N within the plant–soil system in the temperate steppe, and rotational grazing is more preferable over continuous grazing as it could promote higher N retention in grassland ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ganerwahaha完成签到,获得积分10
刚刚
英姑应助11采纳,获得30
刚刚
刚刚
Xng发布了新的文献求助10
1秒前
Codd完成签到,获得积分10
1秒前
共享精神应助Daniel采纳,获得200
1秒前
慕青应助温柔的海安采纳,获得10
2秒前
霸气石头发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
支初晴完成签到 ,获得积分10
7秒前
9秒前
任性冰巧发布了新的文献求助20
10秒前
锦鲤完成签到 ,获得积分10
11秒前
可爱的函函应助leeyc采纳,获得10
11秒前
11秒前
能干的邹完成签到,获得积分10
12秒前
hanzhiyuxing完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
等待的谷波完成签到 ,获得积分10
15秒前
15秒前
nn发布了新的文献求助10
16秒前
16秒前
大模型应助梁世秀采纳,获得10
17秒前
17秒前
17秒前
诗篇发布了新的文献求助10
19秒前
华仔应助moon采纳,获得10
19秒前
温柔一枪王小双完成签到,获得积分10
19秒前
甜橘完成签到,获得积分10
19秒前
王煊发布了新的文献求助10
20秒前
21秒前
Livy发布了新的文献求助10
21秒前
遇上就这样吧应助FrancisCho采纳,获得200
21秒前
21秒前
zhang发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287819
求助须知:如何正确求助?哪些是违规求助? 4439834
关于积分的说明 13823167
捐赠科研通 4322057
什么是DOI,文献DOI怎么找? 2372274
邀请新用户注册赠送积分活动 1367845
关于科研通互助平台的介绍 1331344