Abstract Converting CO 2 to carbon‐based fuels using solar energy via photocatalysis is a promising approach to boost carbon neutrality. However, the solar‐to‐chemical conversion efficiency is hampered by interconnected multiple factors including insufficient light absorption, low separation efficiency of photogenerated carriers as well as complex and sluggish surface reaction kinetics. Herein, we incorporate MnO 2 nanowires and Co 3 O 4 hollow polyhedrons with abundant oxygen vacancies (V O ) into MnO 2 /Co 3 O 4 sugar‐gourd nanohybrids for boosting CO 2 photoreduction. The MnO 2 /Co 3 O 4 nanohybrids not only display strong absorption in the visible–near infrared region, but also facilitate the separation of photogenerated carriers in terms of S‐scheme transfer pathway, supplying abundant electrons for CO 2 reduction reaction. Furthermore, the presence of V O enhances the separation efficiency of photogenerated carriers and promotes the chemical adsorption to CO 2 molecules. In addition, the interfacial electronic interaction between MnO 2 and Co 3 O 4 also contributes to the chemical adsorption and activation to CO 2 . Owing to the synergy of S‐scheme transfer pathway and V O , the MnO 2 /Co 3 O 4 hybrids exhibit greatly enhanced photocatalytic activity towards CO 2 reduction under the irradiation of visible light in comparison with bare MnO 2 and Co 3 O 4 , delivering a CO evolution rate of 15.9 umol g −1 h −1 with a 100 % selectivity.