A Deep Learning-based Approach for Medical Image Analysis and Diagnosis

可解释性 深度学习 工作流程 概化理论 计算机科学 人工智能 多学科方法 医学影像学 领域(数学) 数据科学 机器学习 心理学 发展心理学 社会科学 数学 数据库 社会学 纯数学
作者
Dibyahash Bordoloi
出处
期刊:Journal of algebraic statistics [Paul V. Galvin Library/Illinois Institute of Technology]
标识
DOI:10.52783/jas.v11i1.1436
摘要

The application of deep learning-based methods has revolutionized medical image processing and diagnosis. These methods have shown considerable promise in improving the accuracy and efficiency of medical image processing, reducing the burden on medical staff, and, ultimately, yielding better outcomes for patients. This study aims to summaries the most significant findings from deep learning-based approaches for analyzing and diagnosing medical images. This overview looks at recent literature and describes proposed systems, barriers, and applications of several approaches to this issue. Several barriers have been identified via this analysis, including but not limited to: data quality, data generalizability, data interpretability, ethical and regulatory concerns, integration with clinical workflow, and computer resources. A multidisciplinary approach is necessary to effectively address these challenges; this approach should underline the need of collaboration between researchers, medical professionals, and industry partners. Automated diagnosis, image segmentation, image registration, picture synthesis, and the discovery of biomarkers are just some of the many uses of deep learning-based algorithms in medical image analysis and diagnosis. The field of medical imaging stands to benefit greatly from deep learning-based approaches, which have the potential to change the lives of millions of people across the world for the better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiangdemeilo完成签到,获得积分10
1秒前
1秒前
1秒前
甜甜凉面完成签到,获得积分10
1秒前
Tia完成签到 ,获得积分10
2秒前
2秒前
dingm2完成签到 ,获得积分10
3秒前
VELPRO完成签到,获得积分10
4秒前
伶俐惜萱发布了新的文献求助10
4秒前
5秒前
英姑应助Dimples采纳,获得30
6秒前
华仔应助粗暴的仙人掌采纳,获得10
7秒前
8秒前
风华正茂完成签到,获得积分10
9秒前
9秒前
周梦蝶发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助236采纳,获得10
12秒前
卢皮卡应助柔弱蜻蜓采纳,获得200
13秒前
祖f完成签到,获得积分10
13秒前
13秒前
不达鸟发布了新的文献求助10
13秒前
14秒前
激昂的微笑完成签到,获得积分10
14秒前
自然墨镜应助魔幻的惜海采纳,获得10
15秒前
奕奕发布了新的文献求助10
15秒前
咕咕应助皮皮采纳,获得20
16秒前
加加油发布了新的文献求助30
16秒前
等待的鱼完成签到,获得积分10
16秒前
温暖的烨霖完成签到,获得积分10
17秒前
Hello应助方hh采纳,获得10
17秒前
17秒前
17秒前
17秒前
耶耶完成签到 ,获得积分10
17秒前
18秒前
独爱小新发布了新的文献求助10
18秒前
FashionBoy应助诚心擎苍采纳,获得10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461594
求助须知:如何正确求助?哪些是违规求助? 3055276
关于积分的说明 9047362
捐赠科研通 2745162
什么是DOI,文献DOI怎么找? 1505991
科研通“疑难数据库(出版商)”最低求助积分说明 695963
邀请新用户注册赠送积分活动 695363