Artifical intelligence: a virtual chemist for natural product drug discovery

天然产物 药物发现 计算机科学 化学空间 产品(数学) 自然(考古学) 人工智能 生化工程 数据科学 工程类 生物信息学 化学 生物 立体化学 几何学 古生物学 数学
作者
Shefali Arora,S. Chettri,Versha Percha,Deepak Kumar,Mamta Latwal
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:42 (7): 3826-3835 被引量:5
标识
DOI:10.1080/07391102.2023.2216295
摘要

AbstractAbstractNature is full of a bundle of medicinal substances and its product perceived as a prerogative structure to collaborate with protein drug targets. The natural product's (NPs) structure heterogeneity and eccentric characteristics inspired scientists to work on natural product-inspired medicine. To gear NP drug-finding artificial intelligence (AI) to confront and excavate unexplored opportunities. Natural product-inspired drug discoveries based on AI to act as an innovative tool for molecular design and lead discovery. Various models of machine learning produce quickly synthesizable mimetics of the natural products templates. The invention of novel natural products mimetics by computer-assisted technology provides a feasible strategy to get the natural product with defined bio-activities. AI's hit rate makes its high importance by improving trail patterns such as dose selection, trail life span, efficacy parameters, and biomarkers. Along these lines, AI methods can be a successful tool in a targeted way to formulate advanced medicinal applications for natural products. 'Prediction of future of natural product based drug discovery is not magic, actually its artificial intelligence'Communicated by Ramaswamy H. SarmaKeywords: Data miningbioactivity datamolecular interaction attributeencoding natural product AcknowledgementThe author is thankful to the Department of Chemistry, University of Petroleum and Energy Studies, Dehradun (UK) India for providing the support to carry out this work.Disclosure statementThe author declares that this review content has no conflict of interest.Data availability statementAll data presented during this study are included and references are given in the article. Requests for material should be made to the corresponding authors.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐正怡完成签到 ,获得积分0
刚刚
啊娴仔完成签到,获得积分10
1秒前
LYZSh完成签到,获得积分10
2秒前
冷艳宛白完成签到,获得积分10
3秒前
tingalan发布了新的文献求助10
4秒前
哎呀呀完成签到,获得积分10
4秒前
5秒前
细腻的山水完成签到 ,获得积分20
5秒前
往返完成签到,获得积分10
5秒前
Jerry完成签到,获得积分10
5秒前
一颗红葡萄完成签到 ,获得积分10
6秒前
有魅力勒完成签到,获得积分10
6秒前
SciGPT应助冷艳宛白采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
9秒前
博雅雅雅雅雅完成签到,获得积分10
9秒前
9秒前
七里香完成签到 ,获得积分10
10秒前
ly完成签到 ,获得积分10
10秒前
caulif完成签到 ,获得积分10
10秒前
Xxynysmhxs完成签到 ,获得积分10
10秒前
戴维少尉完成签到,获得积分10
10秒前
11秒前
爽哥发布了新的文献求助10
13秒前
drsxtang完成签到,获得积分10
14秒前
半圆亻完成签到 ,获得积分10
16秒前
aiming完成签到,获得积分10
18秒前
科研通AI2S应助追寻锦程采纳,获得10
18秒前
tingalan发布了新的文献求助10
19秒前
21秒前
wtt完成签到 ,获得积分10
22秒前
无花果应助爽哥采纳,获得10
22秒前
yangyangyang完成签到 ,获得积分10
23秒前
24秒前
vinni发布了新的文献求助10
25秒前
杨冰完成签到,获得积分10
25秒前
HQZ完成签到,获得积分10
27秒前
27秒前
慕青应助JV采纳,获得10
28秒前
洋洋爱吃枣完成签到 ,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303371
求助须知:如何正确求助?哪些是违规求助? 2937689
关于积分的说明 8482879
捐赠科研通 2611588
什么是DOI,文献DOI怎么找? 1426065
科研通“疑难数据库(出版商)”最低求助积分说明 662539
邀请新用户注册赠送积分活动 647026