Size-controlled wet-chemical synthesis of sulfide superionic conductors for high-performance all-solid-state batteries

材料科学 快离子导体 硫化物 离子电导率 锂(药物) 化学工程 电导率 成核 粒径 纳米技术 冶金 物理化学 电极 电解质 有机化学 化学 工程类 医学 内分泌学
作者
Junghwan Sung,Hae Gon Lee,Yung-Soo Jo,Donghee Kim,Heetaek Park,Jun‐Ho Park,Doohun Kim,Yoon‐Cheol Ha,Kang‐Jun Baeg,Jun‐Woo Park
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103253-103253 被引量:1
标识
DOI:10.1016/j.ensm.2024.103253
摘要

The escalating concerns surrounding the safety issues tied to the flammability of organic liquid electrolytes in conventional lithium-ion batteries have catalyzed the evolution and advancement of all-solid-state batteries (ASSBs) integrated with solid electrolytes (SEs). Among various SE materials, sulfide-based lithium argyrodite has risen to prominence owing to its high ionic conductivity and ease of processability. Despite the wet-chemical processing method being considered advantageous for the synthesis of sulfide SEs, due to its inherent simplicity, potential scalability, and cost-effectiveness, certain challenges persist. These primarily pertain to achieving high ionic conductivity and mitigating interfacial resistance between the electrode and the SEs. Addressing these challenges, this study presents a novel, scalable, and cost-efficient wet synthesis approach to produce superionic conductive sulfide-based SEs. This method involves careful regulation of the nucleation rate and strategic substitution of elements to control particle size and enhance ionic conductivity. The resultant Li5.5PS4.5Cl1.5 SEs synthesized show a uniform size distribution (average particle diameter = 7 μm), coupled with a high ionic conductivity of 4.98 mS cm−1. This level of ionic conductivity is either comparable to or exceeds those produced through dry processes. The ability to control particle size optimizes the contact interface between the electrode and the electrolyte, reducing interfacial resistance and increasing discharge capacity. Consequently, this method paves the way for mass production of high-quality sulfide SEs. The findings of this study serve to further the development of high-performing ASSBs, making them suitable for implementation in high output power and long cruising distance electric vehicles, pushing the envelope for battery-powered transportation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咩咩发布了新的文献求助10
2秒前
脑洞疼应助无私文博采纳,获得30
3秒前
想发sci完成签到,获得积分10
4秒前
小疯子发布了新的文献求助10
4秒前
lanchaoyu11发布了新的文献求助10
4秒前
8秒前
科研通AI2S应助allrubbish采纳,获得10
10秒前
智慧吗喽完成签到,获得积分10
13秒前
在水一方应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
机智的天天完成签到,获得积分10
17秒前
Lucas应助阿冰采纳,获得10
18秒前
Jasper应助菜鸡5号采纳,获得10
20秒前
梵克Q宝完成签到,获得积分10
20秒前
朵啦诶萌关注了科研通微信公众号
28秒前
科研虫发布了新的文献求助10
29秒前
31秒前
Dawn发布了新的文献求助10
33秒前
福尔摩柯发布了新的文献求助10
38秒前
情怀应助shangxinyu采纳,获得10
39秒前
Dawn完成签到,获得积分20
43秒前
44秒前
47秒前
49秒前
菜鸡5号发布了新的文献求助10
49秒前
升升升呀完成签到,获得积分10
50秒前
51秒前
shangxinyu发布了新的文献求助10
53秒前
科目三应助科研虫采纳,获得10
53秒前
大个应助wintersss采纳,获得10
53秒前
升升升呀发布了新的文献求助10
54秒前
YXJ发布了新的文献求助10
54秒前
CipherSage应助小小小珂卿采纳,获得10
56秒前
56秒前
高分求助中
LNG地下式貯槽指針(JGA指-107-19)(Recommended practice for LNG inground storage) 1000
Second Language Writing (2nd Edition) by Ken Hyland, 2019 1000
Generalized Linear Mixed Models 第二版 1000
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2921496
求助须知:如何正确求助?哪些是违规求助? 2564514
关于积分的说明 6936026
捐赠科研通 2221820
什么是DOI,文献DOI怎么找? 1181023
版权声明 588791
科研通“疑难数据库(出版商)”最低求助积分说明 577803