Size-controlled wet-chemical synthesis of sulfide superionic conductors for high-performance all-solid-state batteries

材料科学 快离子导体 硫化物 离子电导率 锂(药物) 化学工程 电导率 成核 粒径 纳米技术 冶金 物理化学 电极 电解质 有机化学 化学 工程类 医学 内分泌学
作者
Junghwan Sung,Hae Gon Lee,Yung-Soo Jo,Donghee Kim,Heetaek Park,Jun‐Ho Park,Doohun Kim,Yoon‐Cheol Ha,Kang‐Jun Baeg,Jun‐Woo Park
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103253-103253 被引量:4
标识
DOI:10.1016/j.ensm.2024.103253
摘要

The escalating concerns surrounding the safety issues tied to the flammability of organic liquid electrolytes in conventional lithium-ion batteries have catalyzed the evolution and advancement of all-solid-state batteries (ASSBs) integrated with solid electrolytes (SEs). Among various SE materials, sulfide-based lithium argyrodite has risen to prominence owing to its high ionic conductivity and ease of processability. Despite the wet-chemical processing method being considered advantageous for the synthesis of sulfide SEs, due to its inherent simplicity, potential scalability, and cost-effectiveness, certain challenges persist. These primarily pertain to achieving high ionic conductivity and mitigating interfacial resistance between the electrode and the SEs. Addressing these challenges, this study presents a novel, scalable, and cost-efficient wet synthesis approach to produce superionic conductive sulfide-based SEs. This method involves careful regulation of the nucleation rate and strategic substitution of elements to control particle size and enhance ionic conductivity. The resultant Li5.5PS4.5Cl1.5 SEs synthesized show a uniform size distribution (average particle diameter = 7 μm), coupled with a high ionic conductivity of 4.98 mS cm−1. This level of ionic conductivity is either comparable to or exceeds those produced through dry processes. The ability to control particle size optimizes the contact interface between the electrode and the electrolyte, reducing interfacial resistance and increasing discharge capacity. Consequently, this method paves the way for mass production of high-quality sulfide SEs. The findings of this study serve to further the development of high-performing ASSBs, making them suitable for implementation in high output power and long cruising distance electric vehicles, pushing the envelope for battery-powered transportation solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风云完成签到,获得积分20
1秒前
1秒前
2秒前
小马甲应助我想看文章采纳,获得10
3秒前
Xieyusen发布了新的文献求助10
4秒前
稗子完成签到,获得积分10
5秒前
乐观大白菜真实的钥匙完成签到,获得积分10
6秒前
番茄炒西红柿完成签到 ,获得积分10
8秒前
wanci应助科研通管家采纳,获得10
9秒前
丘比特应助忧郁绝音采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
fifteen应助科研通管家采纳,获得10
10秒前
12秒前
12秒前
SilentStorm完成签到,获得积分10
12秒前
开朗的柜子完成签到,获得积分10
12秒前
kiki完成签到 ,获得积分10
13秒前
帅哥发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
123123完成签到,获得积分10
15秒前
乐乐乐乐乐完成签到 ,获得积分10
15秒前
yyt发布了新的文献求助30
17秒前
科研顺利完成签到,获得积分10
17秒前
18秒前
renpp822发布了新的文献求助50
18秒前
paobashan发布了新的文献求助10
19秒前
风中夜天发布了新的文献求助10
19秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247378
求助须知:如何正确求助?哪些是违规求助? 2890701
关于积分的说明 8264202
捐赠科研通 2559096
什么是DOI,文献DOI怎么找? 1387740
科研通“疑难数据库(出版商)”最低求助积分说明 650648
邀请新用户注册赠送积分活动 627326