Identifying squalene epoxidase as a metabolic vulnerability in high‐risk osteosarcoma using an artificial intelligence‐derived prognostic index

角鲨烯单加氧酶 索引(排版) 角鲨烯 脆弱性(计算) 医学 计算机科学 生物 万维网 生物化学 计算机安全 生物合成
作者
Yongjie Wang,Xiaolong Ma,Enjie Xu,Zhen Huang,Yang Chen,Kunpeng Zhu,Yang Dong,Chunlin Zhang
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:14 (2)
标识
DOI:10.1002/ctm2.1586
摘要

Abstract Background Osteosarcoma (OSA) presents a clinical challenge and has a low 5‐year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high‐risk OSA patients and guide treatment. Methods We combined 10 machine‐learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single‐cell RNA sequencing (scRNA‐seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA‐seq and Western blotting elucidated the impact of squalene epoxidase ( SQLE ) suppression on signalling pathways. Results The artificial intelligence‐derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high‐AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE , increased mTORC1 signalling, disrupted PI3K–Akt signalling, and diminished immune infiltration. ScRNA‐seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE‐specific inhibitor FR194738 demonstrated anti‐OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. Conclusions AIDPI is a robust biomarker for identifying the high‐risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃人陈完成签到,获得积分10
1秒前
ding应助鹤丸子采纳,获得10
2秒前
中禅寺秋彦完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
闪闪的觅儿完成签到 ,获得积分10
4秒前
yuting完成签到,获得积分10
4秒前
zz完成签到,获得积分10
4秒前
会会完成签到,获得积分20
4秒前
shadow完成签到,获得积分10
4秒前
AAAAAAAAAAA完成签到,获得积分10
5秒前
朱猪侠完成签到,获得积分10
5秒前
imi完成签到 ,获得积分10
5秒前
甜甜球完成签到,获得积分10
6秒前
远_09完成签到 ,获得积分10
6秒前
生动大白菜真实的钥匙完成签到,获得积分10
6秒前
小璐sunny发布了新的文献求助10
7秒前
轩辕幻香完成签到 ,获得积分10
7秒前
shuogesama完成签到,获得积分10
8秒前
猫猫虫发布了新的文献求助10
8秒前
吭哧吭哧完成签到,获得积分10
8秒前
懒洋洋tzy发布了新的文献求助10
8秒前
9秒前
BruceQ完成签到 ,获得积分10
9秒前
10秒前
星辰完成签到,获得积分10
10秒前
热心雁易完成签到,获得积分10
11秒前
不配.应助微笑的涛采纳,获得20
11秒前
huhuan完成签到,获得积分10
11秒前
ZZY完成签到 ,获得积分10
12秒前
辣比小欣完成签到,获得积分10
12秒前
耍酷金鱼发布了新的文献求助10
13秒前
13秒前
ikun完成签到 ,获得积分10
14秒前
来日可期发布了新的文献求助10
14秒前
cc完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142960
求助须知:如何正确求助?哪些是违规求助? 2793911
关于积分的说明 7808759
捐赠科研通 2450220
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601356