Multimodal Language and Graph Learning of Adsorption Configuration in Catalysis

计算机科学 可解释性 清晰 机器学习 人工智能 图形 理论计算机科学 化学 生物化学
作者
Janghoon Ock,Rishikesh Magar,Akshay Antony,Amir Barati Farimani
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.07408
摘要

Adsorption energy, a reactivity descriptor, should be accurately assessed for efficient catalyst screening. This evaluation requires determining the lowest energy across various adsorption configurations on the catalytic surface. While graph neural networks (GNNs) have gained popularity as a machine learning approach for computing the energy of catalyst systems, they rely heavily on atomic spatial coordinates and often lack clarity in their interpretations. Recent advancements in language models have broadened their applicability to predicting catalytic properties, allowing us to bypass the complexities of graph representation. These models are adept at handling textual data, making it possible to incorporate observable features in a human-readable format. However, language models encounter challenges in accurately predicting the energy of adsorption configurations, typically showing a high mean absolute error (MAE) of about 0.71 eV. Our study addresses this limitation by introducing a self-supervised multi-modal learning approach, termed graph-assisted pretraining. This method significantly reduces the MAE to 0.35 eV through a combination of data augmentation, achieving comparable accuracy with DimeNet++ while using 0.4% of its training data size. Furthermore, the Transformer encoder at the core of the language model can provide insights into the feature focus through its attention scores. This analysis shows that our multimodal training effectively redirects the model's attention toward relevant adsorption configurations from adsorbate-related features, enhancing prediction accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ASZXDW应助卡卡卡采纳,获得10
1秒前
1秒前
桐桐应助queer采纳,获得10
2秒前
舒畅发布了新的文献求助10
2秒前
2秒前
子车茗应助随行由心采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
研友_Z34DG8发布了新的文献求助10
5秒前
5秒前
舒畅完成签到,获得积分10
6秒前
李健应助Yurinn采纳,获得10
6秒前
独特芷巧发布了新的文献求助10
7秒前
默默曼冬发布了新的文献求助10
7秒前
馨lover发布了新的文献求助30
7秒前
黄橙子发布了新的文献求助10
7秒前
VDC应助你大夫哥采纳,获得10
7秒前
miao应助xzs采纳,获得20
7秒前
iZ1024完成签到,获得积分10
8秒前
失了智发布了新的文献求助10
8秒前
9秒前
9秒前
晓晨完成签到 ,获得积分10
10秒前
Bellamie发布了新的文献求助10
10秒前
直率钢笔完成签到,获得积分10
10秒前
1874完成签到,获得积分10
10秒前
温暖的烨霖完成签到,获得积分10
11秒前
淋漓尽致发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
ying完成签到 ,获得积分10
13秒前
14秒前
星辰大海应助鱼鱼鱼采纳,获得10
15秒前
科研通AI2S应助卡卡卡采纳,获得10
15秒前
磕盐耇完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905