Multimodal Language and Graph Learning of Adsorption Configuration in Catalysis

计算机科学 可解释性 清晰 机器学习 人工智能 图形 理论计算机科学 化学 生物化学
作者
Janghoon Ock,Rishikesh Magar,Akshay Antony,Amir Barati Farimani
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2401.07408
摘要

Adsorption energy, a reactivity descriptor, should be accurately assessed for efficient catalyst screening. This evaluation requires determining the lowest energy across various adsorption configurations on the catalytic surface. While graph neural networks (GNNs) have gained popularity as a machine learning approach for computing the energy of catalyst systems, they rely heavily on atomic spatial coordinates and often lack clarity in their interpretations. Recent advancements in language models have broadened their applicability to predicting catalytic properties, allowing us to bypass the complexities of graph representation. These models are adept at handling textual data, making it possible to incorporate observable features in a human-readable format. However, language models encounter challenges in accurately predicting the energy of adsorption configurations, typically showing a high mean absolute error (MAE) of about 0.71 eV. Our study addresses this limitation by introducing a self-supervised multi-modal learning approach, termed graph-assisted pretraining. This method significantly reduces the MAE to 0.35 eV through a combination of data augmentation, achieving comparable accuracy with DimeNet++ while using 0.4% of its training data size. Furthermore, the Transformer encoder at the core of the language model can provide insights into the feature focus through its attention scores. This analysis shows that our multimodal training effectively redirects the model's attention toward relevant adsorption configurations from adsorbate-related features, enhancing prediction accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梅川秋裤完成签到,获得积分10
1秒前
天天快乐应助坦率的世开采纳,获得10
1秒前
阿郎骑摩的丶完成签到,获得积分10
1秒前
在水一方应助开心的西瓜采纳,获得10
2秒前
AM发布了新的文献求助10
2秒前
烟花应助水123采纳,获得10
3秒前
科研通AI2S应助yuqinghui98采纳,获得10
3秒前
唠叨的代天完成签到,获得积分10
4秒前
4秒前
qiao应助Megumi采纳,获得10
4秒前
哈士轩完成签到,获得积分10
5秒前
自由的思枫完成签到,获得积分10
5秒前
爱撒娇的沛凝完成签到 ,获得积分20
5秒前
6秒前
6秒前
善学以致用应助yul采纳,获得10
6秒前
英俊001发布了新的文献求助10
7秒前
7秒前
共享精神应助阿基米德采纳,获得10
7秒前
8秒前
9秒前
8R60d8应助哈士轩采纳,获得10
10秒前
cdercder应助SongNan_Ding采纳,获得10
10秒前
科研通AI5应助lanjq兰坚强采纳,获得30
10秒前
刻苦天寿完成签到 ,获得积分10
10秒前
hang发布了新的文献求助10
11秒前
gao_yiyi应助我是张铁柱·采纳,获得10
11秒前
eivl完成签到 ,获得积分10
11秒前
11秒前
暮桉完成签到,获得积分10
11秒前
JIAN发布了新的文献求助10
11秒前
小高发布了新的文献求助30
11秒前
曾无忧发布了新的文献求助10
12秒前
dmr发布了新的文献求助200
12秒前
12秒前
秋丶凡尘发布了新的文献求助10
13秒前
乐乐应助LYY采纳,获得10
14秒前
科研大圣完成签到,获得积分10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774200
求助须知:如何正确求助?哪些是违规求助? 3319877
关于积分的说明 10197394
捐赠科研通 3034433
什么是DOI,文献DOI怎么找? 1665030
邀请新用户注册赠送积分活动 796533
科研通“疑难数据库(出版商)”最低求助积分说明 757510