The Impacts of Algorithmic Work Assignment on Fairness Perceptions and Productivity: Evidence from Field Experiments

计算机科学 任务(项目管理) 生产力 复制 相关性(法律) 感知 领域(数学) 样品(材料) 运筹学 心理学 经济 数学 统计 色谱法 宏观经济学 神经科学 化学 管理 法学 纯数学 政治学
作者
Bing Bai,Hengchen Dai,Dennis Zhang,Fuqiang Zhang,Haoyuan Hu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (6): 3060-3078 被引量:39
标识
DOI:10.1287/msom.2022.1120
摘要

Problem definition: We study how algorithmic (versus human-based) task assignment processes change task recipients’ fairness perceptions and productivity. Academic/practical relevance: Since algorithms are widely adopted by businesses and often require human involvement, understanding how humans perceive algorithms is instrumental to the success of algorithm design in operations. Particularly, the growing concern that algorithms may reproduce inequality historically exhibited by humans calls for research about how people perceive the fairness of algorithmic decision making (relative to traditional human-based decision making) and, consequently, adjust their work behaviors. Methodology: In a 15-day-long field experiment with Alibaba Group in a warehouse where workers pick products following orders (or “pick lists”), we randomly assigned half of the workers to receive pick lists from a machine that ostensibly relied on an algorithm to distribute pick lists, and the other half to receive pick lists from a human distributor. Results: Despite that we used the same underlying rule to assign pick lists in both groups, workers perceive the algorithmic (versus human-based) assignment process as fairer by 0.94–1.02 standard deviations. This yields productivity benefits: receiving tasks from an algorithm (versus a human) increases workers’ picking efficiency by 15.56%–17.86%. These findings persist beyond the first day when workers were involved in the experiment, suggesting that our results are not limited to the initial phrase when workers might find algorithmic assignment novel. We replicate the main results in another field experiment involving a nonoverlapping sample of warehouse workers. We also show via online experiments that people in the United States also view algorithmic task assignment as fairer than human-based task assignment. Managerial implications: We demonstrate that algorithms can have broader impacts beyond offering greater efficiency and accuracy than humans: introducing algorithmic assignment processes may enhance fairness perceptions and productivity. This insight can be utilized by managers and algorithm designers to better design and implement algorithm-based decision making in operations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1120 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XuanQi完成签到,获得积分10
刚刚
简默发布了新的文献求助10
1秒前
新八完成签到,获得积分10
1秒前
眼睛大凤完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Hello应助小姜该看论文了采纳,获得10
2秒前
Stella应助怡然的罡采纳,获得10
2秒前
2秒前
大佬完成签到,获得积分10
2秒前
细心慕凝发布了新的文献求助10
3秒前
舒心书南完成签到,获得积分10
4秒前
12完成签到 ,获得积分10
4秒前
4秒前
wen完成签到,获得积分10
4秒前
swg发布了新的文献求助10
4秒前
大模型应助拾柒采纳,获得10
4秒前
Stella应助zhou采纳,获得10
5秒前
Soyuu发布了新的文献求助10
5秒前
王哈哈完成签到,获得积分10
5秒前
zwk发布了新的文献求助10
5秒前
5秒前
任性的牛青完成签到 ,获得积分10
5秒前
5秒前
Ukiss完成签到 ,获得积分10
5秒前
6秒前
6秒前
研友_LNBeyL发布了新的文献求助10
6秒前
五條小羊完成签到,获得积分10
7秒前
abc发布了新的文献求助10
7秒前
7秒前
279完成签到,获得积分10
7秒前
8秒前
Linseed完成签到,获得积分10
9秒前
扬之水完成签到,获得积分10
9秒前
DJDJ发布了新的文献求助10
9秒前
星星关注了科研通微信公众号
10秒前
科目三应助yihua采纳,获得10
10秒前
zjy完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017