The Impacts of Algorithmic Work Assignment on Fairness Perceptions and Productivity: Evidence from Field Experiments

计算机科学 任务(项目管理) 生产力 复制 相关性(法律) 感知 领域(数学) 样品(材料) 运筹学 心理学 经济 数学 统计 化学 管理 色谱法 神经科学 政治学 纯数学 法学 宏观经济学
作者
Bing Bai,Hengchen Dai,Dennis Zhang,Fuqiang Zhang,Haoyuan Hu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (6): 3060-3078 被引量:39
标识
DOI:10.1287/msom.2022.1120
摘要

Problem definition: We study how algorithmic (versus human-based) task assignment processes change task recipients’ fairness perceptions and productivity. Academic/practical relevance: Since algorithms are widely adopted by businesses and often require human involvement, understanding how humans perceive algorithms is instrumental to the success of algorithm design in operations. Particularly, the growing concern that algorithms may reproduce inequality historically exhibited by humans calls for research about how people perceive the fairness of algorithmic decision making (relative to traditional human-based decision making) and, consequently, adjust their work behaviors. Methodology: In a 15-day-long field experiment with Alibaba Group in a warehouse where workers pick products following orders (or “pick lists”), we randomly assigned half of the workers to receive pick lists from a machine that ostensibly relied on an algorithm to distribute pick lists, and the other half to receive pick lists from a human distributor. Results: Despite that we used the same underlying rule to assign pick lists in both groups, workers perceive the algorithmic (versus human-based) assignment process as fairer by 0.94–1.02 standard deviations. This yields productivity benefits: receiving tasks from an algorithm (versus a human) increases workers’ picking efficiency by 15.56%–17.86%. These findings persist beyond the first day when workers were involved in the experiment, suggesting that our results are not limited to the initial phrase when workers might find algorithmic assignment novel. We replicate the main results in another field experiment involving a nonoverlapping sample of warehouse workers. We also show via online experiments that people in the United States also view algorithmic task assignment as fairer than human-based task assignment. Managerial implications: We demonstrate that algorithms can have broader impacts beyond offering greater efficiency and accuracy than humans: introducing algorithmic assignment processes may enhance fairness perceptions and productivity. This insight can be utilized by managers and algorithm designers to better design and implement algorithm-based decision making in operations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1120 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桃子完成签到 ,获得积分10
1秒前
1秒前
追寻鞋垫应助麻薯采纳,获得10
2秒前
SciGPT应助源源采纳,获得10
2秒前
糖豆子发布了新的文献求助10
3秒前
浮游应助玛卡巴卡采纳,获得10
4秒前
4秒前
仗炮由纪完成签到,获得积分10
4秒前
yuanyuan发布了新的文献求助10
4秒前
5秒前
5秒前
SciGPT应助木木814采纳,获得10
6秒前
ILUO发布了新的文献求助10
6秒前
卡戎发布了新的文献求助10
7秒前
妮可完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
hj完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
fan发布了新的文献求助10
9秒前
9秒前
北海北完成签到 ,获得积分10
9秒前
111发布了新的文献求助10
9秒前
Lven发布了新的文献求助30
10秒前
cbb发布了新的文献求助10
10秒前
10秒前
meiguohuo完成签到,获得积分10
10秒前
繁荣的忆之完成签到,获得积分10
10秒前
科研通AI5应助超帅的不可采纳,获得30
11秒前
11秒前
妮可发布了新的文献求助10
12秒前
keyanlv发布了新的文献求助10
12秒前
儒雅的汲完成签到 ,获得积分20
12秒前
ynlqjqx完成签到,获得积分10
13秒前
xiezizai发布了新的文献求助10
13秒前
Jasper应助wanting采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011114
求助须知:如何正确求助?哪些是违规求助? 4252631
关于积分的说明 13251882
捐赠科研通 4055123
什么是DOI,文献DOI怎么找? 2218038
邀请新用户注册赠送积分活动 1227685
关于科研通互助平台的介绍 1149619