The Impacts of Algorithmic Work Assignment on Fairness Perceptions and Productivity: Evidence from Field Experiments

计算机科学 任务(项目管理) 生产力 复制 相关性(法律) 感知 领域(数学) 样品(材料) 运筹学 心理学 经济 数学 统计 色谱法 宏观经济学 神经科学 化学 管理 法学 纯数学 政治学
作者
Bing Bai,Hengchen Dai,Dennis Zhang,Fuqiang Zhang,Haoyuan Hu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (6): 3060-3078 被引量:39
标识
DOI:10.1287/msom.2022.1120
摘要

Problem definition: We study how algorithmic (versus human-based) task assignment processes change task recipients’ fairness perceptions and productivity. Academic/practical relevance: Since algorithms are widely adopted by businesses and often require human involvement, understanding how humans perceive algorithms is instrumental to the success of algorithm design in operations. Particularly, the growing concern that algorithms may reproduce inequality historically exhibited by humans calls for research about how people perceive the fairness of algorithmic decision making (relative to traditional human-based decision making) and, consequently, adjust their work behaviors. Methodology: In a 15-day-long field experiment with Alibaba Group in a warehouse where workers pick products following orders (or “pick lists”), we randomly assigned half of the workers to receive pick lists from a machine that ostensibly relied on an algorithm to distribute pick lists, and the other half to receive pick lists from a human distributor. Results: Despite that we used the same underlying rule to assign pick lists in both groups, workers perceive the algorithmic (versus human-based) assignment process as fairer by 0.94–1.02 standard deviations. This yields productivity benefits: receiving tasks from an algorithm (versus a human) increases workers’ picking efficiency by 15.56%–17.86%. These findings persist beyond the first day when workers were involved in the experiment, suggesting that our results are not limited to the initial phrase when workers might find algorithmic assignment novel. We replicate the main results in another field experiment involving a nonoverlapping sample of warehouse workers. We also show via online experiments that people in the United States also view algorithmic task assignment as fairer than human-based task assignment. Managerial implications: We demonstrate that algorithms can have broader impacts beyond offering greater efficiency and accuracy than humans: introducing algorithmic assignment processes may enhance fairness perceptions and productivity. This insight can be utilized by managers and algorithm designers to better design and implement algorithm-based decision making in operations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1120 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI5应助mengmeng采纳,获得30
2秒前
3秒前
Jiang发布了新的文献求助10
3秒前
姜淮发布了新的文献求助10
4秒前
Daidai发布了新的文献求助10
4秒前
5秒前
呆萌小虾米完成签到,获得积分10
5秒前
飞飞飞123发布了新的文献求助10
6秒前
科研通AI5应助sykzx采纳,获得10
6秒前
Harlotte发布了新的文献求助10
7秒前
kkk556发布了新的文献求助10
7秒前
Lee发布了新的文献求助10
7秒前
认真的冰淇淋完成签到,获得积分20
8秒前
热心的秋尽完成签到,获得积分10
8秒前
8秒前
8888完成签到,获得积分20
8秒前
9秒前
NexusExplorer应助潇洒莞采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科研通AI2S应助SophiaMX采纳,获得10
9秒前
LYC完成签到,获得积分20
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
苹果可燕应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Niniiii应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
11秒前
哭泣灯泡发布了新的文献求助10
11秒前
寒冷一手发布了新的文献求助10
12秒前
斯文败类应助张可采纳,获得10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421