Classification of Glioma by Exploring Wavelet-based Radiomic Features and Machine Learning Techniques using Brats Dataset

随机森林 人工智能 朴素贝叶斯分类器 支持向量机 计算机科学 机器学习 模式识别(心理学) 分级(工程) 逻辑回归 胶质瘤 分类器(UML) 医学 工程类 土木工程 癌症研究
作者
Nisha Elsa Varghese,Ansamma John,Usha Devi Amma C
标识
DOI:10.1109/icaect57570.2023.10118011
摘要

The unusual growth of brain cells leads to brain tumors, out of which gliomas are an aggressive type with increased mortality rate and having different grading. Classifying gliomas into high-grade and low-grade gliomas helps oncologists better manage patient databases and increase the efficiency of treatment plans. Using radiomic features and machine learning techniques on MRI brain images for glioma grading is an emerging research topic. Recently the research on brain tumor MRI images has been conducted on the Brats dataset, which contains training and validation MRI brain images of different patients. In this work, an attempt is made to extract the most relevant features of MR images using pyradiomics and wavelet filters which is helpful in various image mining techniques to improve the overall efficiency. The relevance of extracted features is experimented with using various classifiers, including Support vector machine, random forest, Naive Bayes, Decision Trees, Bagging classifier, K Nearest Neighbor, and logistic regression. The accuracy and sensitivity of classifiers and the effect of feature reduction techniques are analyzed and compared with the identified features. The experimental results show that the Support Vector machine coupled with the factor analysis reduction technique outperforms other classifiers used in this study in terms of stability (RSD) and mean accuracy of about 97%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单细胞测序完成签到,获得积分10
刚刚
热情的板栗完成签到,获得积分10
1秒前
zx完成签到,获得积分10
1秒前
迟大猫应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
maox1aoxin应助科研通管家采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
2秒前
迟大猫应助科研通管家采纳,获得10
2秒前
Lingdongmei应助科研通管家采纳,获得10
2秒前
迟大猫应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
CodeCraft应助舒心的南珍采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
迟大猫应助科研通管家采纳,获得80
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
124应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
威武的皮卡丘完成签到,获得积分10
4秒前
黑粉头头完成签到,获得积分10
5秒前
满意以筠完成签到,获得积分10
8秒前
英俊的铭应助PeizeWu采纳,获得10
10秒前
oldblack完成签到,获得积分10
11秒前
12秒前
小陈完成签到,获得积分10
13秒前
15秒前
星期五完成签到 ,获得积分10
16秒前
16秒前
飞飞发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174