Combined radiomics nomogram of different machine learning models for preoperative distinguishing intraspinal schwannomas and meningiomas: a multicenter and comparative study

医学 列线图 无线电技术 磁共振成像 接收机工作特性 放射科 队列 临床试验 核医学 内科学 肿瘤科
作者
Z. Xu,Y. H. Wang,Zhiyuan Cheng,yingying feng,X C Li,Quan Zhou,Xiang‐Ran Cai
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (9): e1108-e1116
标识
DOI:10.1016/j.crad.2024.05.009
摘要

AIM The objective of our study was to establish and verify a novel combined model based on the multiparameter magnetic resonance imaging (MRI) radiomics and clinical features to distinguish intraspinal schwannomas from meningiomas. MATERIALS AND METHODS This research analyzed the preoperative magnetic resonance (MR) images and clinical characteristics of 209 patients with intraspinal tumors who received tumor resection at three institutions. 159 individuals from institutions 1 and 2 were randomly assigned into a training group (n=111) and a test group (n=48) in a 7-3 ratio. A nomogram was constructed using the training cohort and was internally and externally verified in the test cohort and an independent validation cohort (n=50). Model performance was assessed utilizing the area under the curve (AUC) of receiver operating characteristics (ROC), decision curve analysis (DCA), and calibration curves. RESULTS The nomogram exhibited superior predictive efficacy in distinguishing between spinal schwannomas and meningiomas when compared to both the radiomics model and clinical model. The nomogram yielded AUCs of 0.994, 0.962, and 0.949 in the training, test, and external validation cohorts, respectively, indicating its exceptional differentiating ability. The DCAs demonstrated that the nomogram yielded the best net benefit. The calibration curves indicated that the nomogram got good agreement between the predicted and the actual observation. CONCLUSION This research suggests that the nomogram incorporating clinical and radiomics features may be an effective auxiliary tool for distinguishing between intraspinal schwannomas and meningiomas, and has important clinical significance for clinical decision making and prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy严发布了新的文献求助10
刚刚
田様应助温暖的数据线采纳,获得10
1秒前
CQD5201314完成签到,获得积分10
2秒前
2秒前
冷酷凌丝完成签到,获得积分10
3秒前
完美花生完成签到,获得积分20
3秒前
刘源发布了新的文献求助10
5秒前
5秒前
6秒前
轩羊羊完成签到 ,获得积分10
7秒前
8秒前
8秒前
fane完成签到,获得积分10
9秒前
10秒前
Snowy周完成签到,获得积分10
10秒前
Xiaoxiao发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
sfsfes完成签到 ,获得积分10
13秒前
英吉利25发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
胡说八道完成签到 ,获得积分10
17秒前
科研通AI2S应助lzh_022采纳,获得10
18秒前
zhan完成签到,获得积分10
20秒前
学术大亨发布了新的文献求助10
21秒前
温暖的数据线完成签到,获得积分10
22秒前
22秒前
所所应助一蓑烟雨任平生采纳,获得10
23秒前
大喜完成签到,获得积分10
23秒前
Haonan完成签到,获得积分10
24秒前
24秒前
科研通AI2S应助lslslslsllss采纳,获得10
25秒前
善学以致用应助Ashmitte采纳,获得10
26秒前
wxt完成签到 ,获得积分10
28秒前
哈哈哈哈怪完成签到,获得积分10
30秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966052
求助须知:如何正确求助?哪些是违规求助? 3511373
关于积分的说明 11158054
捐赠科研通 3245980
什么是DOI,文献DOI怎么找? 1793250
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311