Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model

纳米毒理学 动力学 银纳米粒子 纳米颗粒 降级(电信) 生物物理学 化学 纳米技术 溶解 细胞内 材料科学 生物化学 计算机科学 有机化学 量子力学 电信 生物 物理
作者
Xiangrui Wang,Wen‐Xiong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (20): 13308-13321 被引量:2
标识
DOI:10.1021/acsnano.4c03032
摘要

Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
1秒前
期刊应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
最卷的卷心菜完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得50
1秒前
田様应助科研通管家采纳,获得100
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
yun尘世应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
知性的映之完成签到,获得积分10
2秒前
2秒前
小蘑菇应助圈圈采纳,获得10
2秒前
万能图书馆应助七块采纳,获得10
3秒前
yatou5651发布了新的文献求助10
3秒前
小二郎应助futing采纳,获得10
3秒前
天天快乐应助阿金采纳,获得10
3秒前
flyabc完成签到,获得积分10
4秒前
qp发布了新的文献求助10
4秒前
香蕉觅云应助刘鹏宇采纳,获得10
5秒前
可爱的函函应助沉静哲瀚采纳,获得10
5秒前
5秒前
5秒前
乖乖完成签到,获得积分20
5秒前
6秒前
6秒前
小豆芽儿完成签到,获得积分20
6秒前
布鲁鲁完成签到,获得积分10
8秒前
偷猪剑客完成签到,获得积分10
8秒前
SQ发布了新的文献求助10
8秒前
9秒前
李健应助强健的月饼采纳,获得30
9秒前
陶1122完成签到,获得积分10
9秒前
9秒前
changaipei完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678