Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model

纳米毒理学 动力学 银纳米粒子 纳米颗粒 降级(电信) 生物物理学 化学 纳米技术 溶解 细胞内 材料科学 生物化学 计算机科学 有机化学 量子力学 电信 生物 物理
作者
Xiangrui Wang,Wen‐Xiong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (20): 13308-13321 被引量:2
标识
DOI:10.1021/acsnano.4c03032
摘要

Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大约在冬季完成签到,获得积分10
刚刚
Luos完成签到,获得积分10
1秒前
许晴发布了新的文献求助10
1秒前
今后应助壮观溪流采纳,获得10
1秒前
1秒前
CipherSage应助liuxh123采纳,获得30
2秒前
大意的青槐完成签到 ,获得积分10
2秒前
hhhhh完成签到,获得积分10
2秒前
万能图书馆应助moyacheung采纳,获得10
2秒前
3秒前
健壮的悟空完成签到,获得积分10
3秒前
3秒前
唯博完成签到 ,获得积分10
3秒前
浮游应助大秋哥哈拉少采纳,获得10
4秒前
lwroche完成签到,获得积分10
4秒前
二九十二完成签到,获得积分10
4秒前
Iris发布了新的文献求助10
5秒前
方方发布了新的文献求助10
5秒前
Lucas应助迷人雪碧采纳,获得10
5秒前
asdf完成签到,获得积分10
5秒前
5秒前
Lisiqi完成签到,获得积分10
5秒前
完美世界应助酸酸茹采纳,获得10
6秒前
Seona发布了新的文献求助20
6秒前
Orange应助gazi采纳,获得10
6秒前
邓邓完成签到,获得积分10
7秒前
清颜完成签到 ,获得积分10
7秒前
7秒前
唠叨的白曼完成签到,获得积分10
7秒前
完美世界应助敲敲采纳,获得10
7秒前
六子发布了新的文献求助10
8秒前
紫色哀伤完成签到,获得积分10
8秒前
shadow发布了新的文献求助10
8秒前
小二郎应助SuperFAN采纳,获得10
9秒前
9秒前
liuxh123完成签到,获得积分20
9秒前
唐浩完成签到,获得积分10
9秒前
自由采枫完成签到,获得积分10
9秒前
海棠朵朵完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676