Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model

纳米毒理学 动力学 银纳米粒子 纳米颗粒 降级(电信) 生物物理学 化学 纳米技术 溶解 细胞内 材料科学 生物化学 计算机科学 有机化学 量子力学 电信 生物 物理
作者
Xiangrui Wang,Wen‐Xiong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (20): 13308-13321 被引量:2
标识
DOI:10.1021/acsnano.4c03032
摘要

Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千树怜发布了新的文献求助10
1秒前
1秒前
2秒前
orchid发布了新的文献求助10
3秒前
小尚完成签到,获得积分10
3秒前
小小咸鱼完成签到 ,获得积分10
4秒前
summer完成签到,获得积分10
4秒前
4秒前
Frank完成签到,获得积分10
5秒前
Criminology34发布了新的文献求助300
6秒前
嘿嘿应助乾澪怀新采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
happy星发布了新的文献求助10
9秒前
Boro发布了新的文献求助10
9秒前
10秒前
之_ZH完成签到 ,获得积分10
11秒前
xingyi完成签到,获得积分10
11秒前
无所忌惮的玫瑰果完成签到,获得积分10
12秒前
平贝花应助mtfx采纳,获得10
12秒前
嘴巴张大一点完成签到,获得积分10
12秒前
qigu完成签到,获得积分10
12秒前
包容的垣完成签到,获得积分10
12秒前
12秒前
heqiancan完成签到,获得积分10
13秒前
smofan发布了新的文献求助10
13秒前
草莓星完成签到,获得积分10
14秒前
15秒前
千树怜完成签到,获得积分20
15秒前
辛勤白玉发布了新的文献求助10
16秒前
andrewliu发布了新的文献求助10
17秒前
孟梦发布了新的文献求助10
17秒前
Orange应助Enkcy采纳,获得10
17秒前
小蘑菇应助SHAHc采纳,获得10
18秒前
18秒前
hyperle完成签到,获得积分10
18秒前
隐形的乐枫完成签到,获得积分10
18秒前
19秒前
蓝天发布了新的文献求助20
21秒前
田様应助粉红色的小花卷采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176