Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model

纳米毒理学 动力学 银纳米粒子 纳米颗粒 降级(电信) 生物物理学 化学 纳米技术 溶解 细胞内 材料科学 生物化学 计算机科学 有机化学 量子力学 电信 生物 物理
作者
Xiangrui Wang,Wen‐Xiong Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (20): 13308-13321 被引量:2
标识
DOI:10.1021/acsnano.4c03032
摘要

Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到,获得积分10
刚刚
瘦瘦世德完成签到 ,获得积分10
刚刚
刚刚
独特手套发布了新的文献求助10
1秒前
2秒前
前进四应助流水不争先采纳,获得10
3秒前
4秒前
4秒前
科研喵发布了新的文献求助10
4秒前
trq1007完成签到,获得积分10
6秒前
6秒前
ding应助甜美白云采纳,获得10
6秒前
闵凝竹完成签到 ,获得积分0
6秒前
wangjing11完成签到,获得积分10
6秒前
mogeko发布了新的文献求助10
6秒前
ZOE应助清浅采纳,获得30
7秒前
zw发布了新的文献求助10
7秒前
哈哈哈哈哈完成签到,获得积分10
7秒前
7秒前
有魅力的水蜜桃完成签到 ,获得积分10
8秒前
8秒前
8秒前
关关过应助cheer采纳,获得30
8秒前
8秒前
乐乐应助包子采纳,获得10
8秒前
9秒前
从笙完成签到,获得积分10
9秒前
寓言完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
顾矜应助dd采纳,获得10
10秒前
lucky完成签到,获得积分10
10秒前
文鸯发布了新的文献求助10
11秒前
11秒前
11秒前
shidandan完成签到 ,获得积分10
11秒前
JamesPei应助失眠的白桃采纳,获得10
11秒前
啊嚏完成签到,获得积分20
11秒前
mengzhao发布了新的文献求助10
13秒前
13秒前
无奈的小懒虫完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956