Modeling Chemical Reactions in Alkali Carbonate–Hydroxide Electrolytes with Deep Learning Potentials

电解质 氢氧化物 化学反应 碳酸盐 扩散 密度泛函理论 碱金属 化学种类 化学 化学平衡 分子动力学 计算化学 化学物理 材料科学 热力学 物理化学 无机化学 有机化学 物理 电极
作者
Anirban Mondal,Dina Kussainova,Shuwen Yue,Athanassios Z. Panagiotopoulos
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (14): 4584-4595 被引量:19
标识
DOI:10.1021/acs.jctc.2c00816
摘要

We developed a deep potential machine learning model for simulations of chemical reactions in molten alkali carbonate-hydroxide electrolyte containing dissolved CO2, using an active learning procedure. We tested the deep neural network (DNN) potential and training procedure against reaction kinetics, chemical composition, and diffusion coefficients obtained from density functional theory (DFT) molecular dynamics calculations. The DNN potential was found to match DFT results for the structural, transport, and short-time chemical reactions in the melt. Using the DNN potential, we extended the time scales of observation to 2 ns in systems containing thousands of atoms, while preserving quantum chemical accuracy. This allowed us to reach chemical equilibrium with respect to several chemical species in the melt. The approach can be generalized for a broad spectrum of chemically reactive systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助高君奇采纳,获得10
刚刚
小二郎应助特兰克斯采纳,获得10
刚刚
mojomars发布了新的文献求助10
刚刚
吃嘛嘛香完成签到,获得积分10
刚刚
wqy发布了新的文献求助10
1秒前
天天快乐应助新的心跳采纳,获得10
1秒前
Orange应助有益采纳,获得10
1秒前
3秒前
爆米花应助marinemiao采纳,获得10
3秒前
3秒前
招财不肥发布了新的文献求助10
4秒前
网安真难T_T完成签到,获得积分10
4秒前
大土豆子完成签到,获得积分10
5秒前
5秒前
甜甜醉波发布了新的文献求助10
6秒前
CodeCraft应助jy采纳,获得10
6秒前
领导范儿应助睡睡采纳,获得10
6秒前
哈哈完成签到 ,获得积分10
7秒前
Holleay123发布了新的文献求助10
8秒前
8秒前
9秒前
苏卿应助kento采纳,获得100
9秒前
小马甲应助满意之玉采纳,获得10
9秒前
10秒前
Jing完成签到,获得积分10
11秒前
饕餮发布了新的文献求助10
11秒前
12秒前
12秒前
wqy完成签到,获得积分10
12秒前
犹豫的戎完成签到,获得积分20
12秒前
狗子完成签到 ,获得积分10
13秒前
CodeCraft应助小小飞采纳,获得10
13秒前
JamesPei应助JUSTs0so采纳,获得10
15秒前
Beth完成签到,获得积分10
15秒前
粥粥发布了新的文献求助10
16秒前
16秒前
庞威完成签到 ,获得积分10
16秒前
17秒前
吕春雨完成签到,获得积分10
17秒前
Grayball应助ccc采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808