电解质
氢氧化物
化学反应
碳酸盐
扩散
密度泛函理论
碱金属
化学种类
化学
化学平衡
分子动力学
计算化学
化学物理
材料科学
热力学
物理化学
无机化学
有机化学
物理
电极
作者
Anirban Mondal,Dina Kussainova,Shuwen Yue,Athanassios Z. Panagiotopoulos
标识
DOI:10.1021/acs.jctc.2c00816
摘要
We developed a deep potential machine learning model for simulations of chemical reactions in molten alkali carbonate-hydroxide electrolyte containing dissolved CO2, using an active learning procedure. We tested the deep neural network (DNN) potential and training procedure against reaction kinetics, chemical composition, and diffusion coefficients obtained from density functional theory (DFT) molecular dynamics calculations. The DNN potential was found to match DFT results for the structural, transport, and short-time chemical reactions in the melt. Using the DNN potential, we extended the time scales of observation to 2 ns in systems containing thousands of atoms, while preserving quantum chemical accuracy. This allowed us to reach chemical equilibrium with respect to several chemical species in the melt. The approach can be generalized for a broad spectrum of chemically reactive systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI