RNA序列
计算生物学
转录组
核糖核酸
生物
基因表达
基因
单细胞分析
基因表达谱
细胞
判别式
遗传学
计算机科学
人工智能
作者
Vasilis Ntranos,Lynn Yi,Páll Melsted,Lior Pachter
出处
期刊:Nature Methods
[Springer Nature]
日期:2019-01-21
卷期号:16 (2): 163-166
被引量:116
标识
DOI:10.1038/s41592-018-0303-9
摘要
Single-cell RNA-seq makes it possible to characterize the transcriptomes of cell types across different conditions and to identify their transcriptional signatures via differential analysis. Our method detects changes in transcript dynamics and in overall gene abundance in large numbers of cells to determine differential expression. When applied to transcript compatibility counts obtained via pseudoalignment, our approach provides a quantification-free analysis of 3′ single-cell RNA-seq that can identify previously undetectable marker genes. Logistic regression predicts differential gene expression and transcript usage.
科研通智能强力驱动
Strongly Powered by AbleSci AI