Comparative metabolomics and transcriptomic profiling reveal the mechanism of fruit quality deterioration and the resistance of citrus fruit against Penicillium digitatum

指青霉 采后 生物 WRKY蛋白质结构域 茉莉酸 生物化学 柑橘×冬青 MYB公司 代谢途径 植物 微生物学 化学 转录组 食品科学 橙色(颜色) 转录因子 水杨酸 新陈代谢 基因表达 基因
作者
Ning Tang,Nan Chen,Nan Hu,Wei Deng,Zexiong Chen,Zhengguo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:145: 61-73 被引量:41
标识
DOI:10.1016/j.postharvbio.2018.06.007
摘要

Decay, caused by Penicillium infection, is one of the main problems during postharvest storage in citrus fruit. A deeper understanding of the mechanism of fruit quality deterioration and the fruit's defense responses may lead us to develop rational approaches for disease control. To identify the metabolic and regulatory mechanisms of citrus against Penicillium digitatum, Powell orange (Citrus sinensis) fruit pulps were collected after 40 h and 60 h infected with P. digitatum for RNA-Seq analysis complemented with metabolic profiling of polar metabolites and volatile emissions. Results demonstrated that several primary metabolites and volatile organic compounds (VOCs) were significantly regulated in response to P. digitatum infection. The contents of sugars (e.g. glucose and sucrose), organic acids (e.g. citric acid, malic acid, and oxalic acid), vitamin C and D-limonene were decreased, while others such as ethanol and a-terpineol were in outstanding increases, resulting in fruit quality deterioration. Rhamnose, inositol, serine, threonine and γ-aminobutyric acid (GABA) also accumulated, thereby enhancing the resistance to P. digitatum infection. RNA-Seq data revealed a series of significantly enriched pathways. P. digitatum infection induced G-protein and RLK signal pathways and enhanced the transcription of stress-related genes including peroxidase and NBS-LRR. Furthermore, P. digitatum infection triggered a defense response via both the jasmonic acid and ethylene pathways, and increased the transcript abundance of several transcription factors such as ERFs, WRKYs, and MYB. Phenylpropanoids pathways were also activated at the transcriptomic level. In summary, our results unravel the significantly regulated metabolites and biological pathways, which provide new insights into the mechanism of fruit quality deterioration and the induction of resistance against P. digitatum in Powell fruit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助小米儿采纳,获得10
刚刚
3秒前
兴奋的天蓝完成签到,获得积分10
3秒前
JamesPei应助oaim采纳,获得10
4秒前
大模型应助111采纳,获得10
5秒前
海阔天空独立思考完成签到,获得积分10
6秒前
7秒前
霸气的猎豹完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助30
7秒前
科研通AI2S应助谈志龙采纳,获得10
7秒前
pattzz完成签到,获得积分20
8秒前
8秒前
MXJ完成签到,获得积分10
8秒前
9秒前
星辰大海应助苗子采纳,获得10
9秒前
shinysparrow应助hhh采纳,获得50
10秒前
猫猫小队长完成签到 ,获得积分10
10秒前
11秒前
ding应助Giggle采纳,获得10
12秒前
12秒前
12秒前
SUN发布了新的文献求助10
13秒前
快乐小行星发布了新的文献求助100
16秒前
aaaaaab发布了新的文献求助10
17秒前
oaim完成签到,获得积分10
18秒前
orixero应助丙烯酸树脂采纳,获得10
19秒前
20秒前
20秒前
asdaqqqq发布了新的文献求助10
21秒前
风中如风完成签到,获得积分10
21秒前
爆米花应助ha哈采纳,获得10
22秒前
22秒前
SciGPT应助东风恶采纳,获得10
23秒前
yy应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
子车茗应助科研通管家采纳,获得10
26秒前
MinamiKotori应助科研通管家采纳,获得30
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248