Bayesian Deep Net GLM and GLMM

计算机科学 机器学习 人工智能 Python(编程语言) 人工神经网络 贝叶斯推理 算法 贝叶斯线性回归 贝叶斯概率 操作系统
作者
Minh‐Ngoc Tran,Nghia Nguyen,David J. Nott,Robert Kohn
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:29 (1): 97-113 被引量:45
标识
DOI:10.1080/10618600.2019.1637747
摘要

Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely used in the literature, perhaps because of the computational challenges of incorporating subject specific parameters into already complex models. Efficient computational methods for high-dimensional Bayesian inference are developed using Gaussian variational approximation, with a parsimonious but flexible factor parameterization of the covariance matrix. We implement natural gradient methods for the optimization, exploiting the factor structure of the variational covariance matrix in computation of the natural gradient. Our flexible DFNN models and Bayesian inference approach lead to a regression and classification method that has a high prediction accuracy, and is able to quantify the prediction uncertainty in a principled and convenient way. We also describe how to perform variable selection in our deep learning method. The proposed methods are illustrated in a wide range of simulated and real-data examples, and compare favorably to a state of the art flexible regression and classification method in the statistical literature, the Bayesian additive regression trees (BART) method. User-friendly software packages in Matlab, R, and Python implementing the proposed methods are available at https://github.com/VBayesLab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鱼完成签到,获得积分20
刚刚
Ida完成签到 ,获得积分10
3秒前
果果发布了新的文献求助10
4秒前
大鱼发布了新的文献求助20
6秒前
10秒前
严惜发布了新的文献求助10
13秒前
14秒前
SYLH应助Alioth采纳,获得10
14秒前
Lucas应助次一口8采纳,获得10
16秒前
Lucas应助哈哈哈采纳,获得10
16秒前
17秒前
JamesPei应助严惜采纳,获得10
17秒前
64658应助萱萱采纳,获得10
20秒前
单薄店员发布了新的文献求助10
21秒前
23秒前
23秒前
64658应助百尺竿头采纳,获得30
24秒前
LLSSLL完成签到,获得积分10
25秒前
123发布了新的文献求助10
26秒前
27秒前
SciGPT应助调皮万怨采纳,获得10
27秒前
28秒前
共享精神应助kk采纳,获得10
31秒前
Jally发布了新的文献求助10
31秒前
爆米花应助小林采纳,获得10
32秒前
Ava应助合适的帆布鞋采纳,获得10
32秒前
不安机器猫完成签到,获得积分10
35秒前
汉堡包应助恋雅颖月采纳,获得10
35秒前
下雨的颜色完成签到,获得积分10
36秒前
genomed应助刘家小姐姐采纳,获得10
36秒前
37秒前
Qiao应助今晚吃什么采纳,获得10
37秒前
38秒前
38秒前
aaaaaa发布了新的文献求助10
38秒前
39秒前
热热带汤发布了新的文献求助10
39秒前
42秒前
42秒前
我不是胖子完成签到,获得积分20
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962593
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141766
捐赠科研通 3241330
什么是DOI,文献DOI怎么找? 1791510
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803483