Distinguishing Tumor Recurrence From Radiation Necrosis in Treated Glioblastoma Using Multiparametric MRI

部分各向异性 有效扩散系数 磁共振弥散成像 核医学 磁共振成像 医学 体内磁共振波谱 肌酸 接收机工作特性 核磁共振 胶质母细胞瘤 放射科 内科学 物理 癌症研究
作者
Aozi Feng,Peipei Yuan,Tao Huang,Li Li,Jun Lyu
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (9): 1320-1331 被引量:14
标识
DOI:10.1016/j.acra.2021.11.008
摘要

Purpose The purpose of this study was to evaluate the diagnostic performance of single-parameter, unimodal and bimodal magnetic resonance imaging (MRI) in differentiating tumor recurrence (TR) from radiation necrosis (RN) in patients with glioblastoma (GBM) after treatment using diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), dynamic susceptibility contrast enhancement-perfusion weighted imaging (DSC-PWI), and proton magnetic resonance spectroscopy (1H-MRS). Materials and Methods Patients with histologically proven GBM who underwent surgical intervention followed by chemoradiotherapy and developed a new, progressively enhanced lesion on follow-up MRI were included in our study. Subsequently, DWI, DTI, DSC-PWI, and 1H-MRS were performed. Then, these patients underwent a second surgical operation or follow-up MRI to prove TR or RN. MRI metrics include apparent diffusion coefficient (ADC) and relative ADC (rADC) values derived from DWI; fractional anisotropy (FA), axial diffusion coefficient (DA) and radial diffusion coefficient (DR) values derived from DTI; and relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) derived from DSC-PWI. Spectral metabolites such as choline (Cho), creatine (Cr), N-acetylaspartate (NAA), lactate (Lac), and lipids (Lip) were derived from MRS, and the ratios of these metabolites were calculated, including Cho/NAA, Cho/Cr, NAA/Cr, Lac/Cr, and Lip/Cr. These indices were compared between the TR group and RN group, and the receiver operating characteristic (ROC) curve was used to evaluate the performance in distinguishing TR from RN by using single-parameter, unimodal and bimodal MRI. Results There were significant differences between the TR and RN groups in terms of ADC (p = 0.001), rADC (p < 0.001), FA (p = 0.001), DA (p = 0.003), DR (p = 0.003), rCBV (p < 0.001), rCBF (p < 0.001), Cho/NAA (p < 0.001), Lac/Cr (p < 0.001) and Lip/Cr (p < 0.001). ROC analysis suggested that rCBV, MRS, and DSC + MRS were the optimal single-parameter, unimodal, and bimodal MRI classifiers for distinguishing TR from RN, with AUC values of 0.909, 0.940, and 0.994, respectively. Conclusion The combination of parameters based on multiparametric MRI in the region of enhanced lesions is a valuable noninvasive tool for discriminating TR from RN. The purpose of this study was to evaluate the diagnostic performance of single-parameter, unimodal and bimodal magnetic resonance imaging (MRI) in differentiating tumor recurrence (TR) from radiation necrosis (RN) in patients with glioblastoma (GBM) after treatment using diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), dynamic susceptibility contrast enhancement-perfusion weighted imaging (DSC-PWI), and proton magnetic resonance spectroscopy (1H-MRS). Patients with histologically proven GBM who underwent surgical intervention followed by chemoradiotherapy and developed a new, progressively enhanced lesion on follow-up MRI were included in our study. Subsequently, DWI, DTI, DSC-PWI, and 1H-MRS were performed. Then, these patients underwent a second surgical operation or follow-up MRI to prove TR or RN. MRI metrics include apparent diffusion coefficient (ADC) and relative ADC (rADC) values derived from DWI; fractional anisotropy (FA), axial diffusion coefficient (DA) and radial diffusion coefficient (DR) values derived from DTI; and relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) derived from DSC-PWI. Spectral metabolites such as choline (Cho), creatine (Cr), N-acetylaspartate (NAA), lactate (Lac), and lipids (Lip) were derived from MRS, and the ratios of these metabolites were calculated, including Cho/NAA, Cho/Cr, NAA/Cr, Lac/Cr, and Lip/Cr. These indices were compared between the TR group and RN group, and the receiver operating characteristic (ROC) curve was used to evaluate the performance in distinguishing TR from RN by using single-parameter, unimodal and bimodal MRI. There were significant differences between the TR and RN groups in terms of ADC (p = 0.001), rADC (p < 0.001), FA (p = 0.001), DA (p = 0.003), DR (p = 0.003), rCBV (p < 0.001), rCBF (p < 0.001), Cho/NAA (p < 0.001), Lac/Cr (p < 0.001) and Lip/Cr (p < 0.001). ROC analysis suggested that rCBV, MRS, and DSC + MRS were the optimal single-parameter, unimodal, and bimodal MRI classifiers for distinguishing TR from RN, with AUC values of 0.909, 0.940, and 0.994, respectively. The combination of parameters based on multiparametric MRI in the region of enhanced lesions is a valuable noninvasive tool for discriminating TR from RN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lunjianchi完成签到,获得积分10
刚刚
YY关闭了YY文献求助
刚刚
CHBW完成签到,获得积分10
1秒前
瞿采枫完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
英俊的铭应助huntme采纳,获得10
4秒前
上官若男应助Puokn采纳,获得10
4秒前
迷途发布了新的文献求助10
4秒前
dawn完成签到,获得积分10
4秒前
机灵忆安完成签到,获得积分10
4秒前
5秒前
asdfj应助cjjjjjj采纳,获得30
5秒前
充电宝应助111采纳,获得10
5秒前
ATT发布了新的文献求助10
6秒前
林夕发布了新的文献求助30
6秒前
7秒前
谨慎青亦发布了新的文献求助10
7秒前
hl应助飘逸鼠标采纳,获得10
7秒前
8秒前
沉静的店员完成签到,获得积分10
8秒前
9秒前
ZZCrazy发布了新的文献求助10
9秒前
10秒前
tianzml0应助青黛采纳,获得10
10秒前
bailuoshiqi发布了新的文献求助10
10秒前
weiwei发布了新的文献求助10
10秒前
范范完成签到,获得积分10
11秒前
hjx发布了新的文献求助10
13秒前
周四一完成签到,获得积分10
13秒前
hong发布了新的文献求助10
14秒前
研友_VZG7GZ应助Mr.w采纳,获得10
14秒前
MyMiao发布了新的文献求助10
15秒前
1233发布了新的文献求助10
15秒前
18秒前
18秒前
squirtle发布了新的文献求助30
19秒前
Charon完成签到,获得积分10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608