Location prediction with personalized federated learning

计算机科学 人气 基线(sea) 数据挖掘 机器学习 人工智能 心理学 社会心理学 海洋学 地质学
作者
Shuang Wang,BoWei Wang,Shuai Yao,Jiangqin Qu,Yuezheng Pan
出处
期刊:Soft Computing [Springer Science+Business Media]
被引量:3
标识
DOI:10.1007/s00500-022-07045-4
摘要

Location prediction has attracted wide attention in human mobility prediction because of the popularity of location-based social networks. Existing location prediction methods have achieved remarkable development in centrally stored datasets. However, these datasets contain privacy data about user behaviors and may cause privacy issues. A location prediction method is proposed in our work to predict human movement behavior using federated learning techniques in which the data are stored in different clients and different clients cooperate to train to extract useful users' behavior information and prevent the disclosure of privacy information. Firstly, we put forward an innovative spatiotemporal location prediction framework (STLPF) for location prediction by integrating spatiotemporal information in local and global views on each client and propose a new loss function to optimize the model. Secondly, we design a new personalized federated learning framework in which clients can cooperatively train their personalized models in the absence of a global model. Finally, the numerous experimental results on check-in datasets further show that our privacy-protected method is superior and more effective than various baseline approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dream完成签到,获得积分10
刚刚
changping应助科研通管家采纳,获得10
1秒前
laber应助科研通管家采纳,获得50
1秒前
浮游应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Dream发布了新的文献求助10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
阿豪完成签到 ,获得积分20
2秒前
laber应助科研通管家采纳,获得50
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得30
3秒前
herococa应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
乐乐应助顺利铃铛采纳,获得30
4秒前
4秒前
4秒前
hanzhang发布了新的文献求助10
4秒前
狂野的初晴完成签到,获得积分20
4秒前
香蕉觅云应助刘梦男采纳,获得10
4秒前
4秒前
5秒前
7秒前
7秒前
Levieus应助狂野的初晴采纳,获得10
8秒前
白宏宝发布了新的文献求助10
9秒前
9秒前
compchem发布了新的文献求助10
9秒前
无欲无求发布了新的文献求助10
9秒前
搜集达人应助孙思琪采纳,获得10
9秒前
huco发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073745
求助须知:如何正确求助?哪些是违规求助? 4293839
关于积分的说明 13379559
捐赠科研通 4115216
什么是DOI,文献DOI怎么找? 2253490
邀请新用户注册赠送积分活动 1258246
关于科研通互助平台的介绍 1191140