kmtricks: efficient and flexible construction of Bloom filters for large sequencing data collections

大方坯过滤器 基因组 计算机科学 k-mer公司 集合(抽象数据类型) 数据挖掘 数据集 散列函数 滤波器(信号处理) 计算生物学 DNA测序 算法 生物 人工智能 遗传学 DNA 计算机安全 计算机视觉 基因 程序设计语言
作者
Téo Lemane,Paul Medvedev,Rayan Chikhi,Pierre Peterlongo
出处
期刊:Bioinformatics advances [Oxford University Press]
卷期号:2 (1) 被引量:29
标识
DOI:10.1093/bioadv/vbac029
摘要

When indexing large collections of short-read sequencing data, a common operation that has now been implemented in several tools (Sequence Bloom Trees and variants, BIGSI) is to construct a collection of Bloom filters, one per sample. Each Bloom filter is used to represent a set of k-mers which approximates the desired set of all the non-erroneous k-mers present in the sample. However, this approximation is imperfect, especially in the case of metagenomics data. Erroneous but abundant k-mers are wrongly included, and non-erroneous but low-abundant ones are wrongly discarded. We propose kmtricks, a novel approach for generating Bloom filters from terabase-sized collections of sequencing data. Our main contributions are (i) an efficient method for jointly counting k-mers across multiple samples, including a streamlined Bloom filter construction by directly counting, partitioning and sorting hashes instead of k-mers, which is approximately four times faster than state-of-the-art tools; (ii) a novel technique that takes advantage of joint counting to preserve low-abundant k-mers present in several samples, improving the recovery of non-erroneous k-mers. Our experiments highlight that this technique preserves around 8× more k-mers than the usual yet crude filtering of low-abundance k-mers in a large metagenomics dataset.https://github.com/tlemane/kmtricks.Supplementary data are available at Bioinformatics Advances online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助marinemiao采纳,获得10
5秒前
HMBB发布了新的文献求助10
5秒前
852应助hmx采纳,获得30
5秒前
紫色水晶之恋完成签到,获得积分0
6秒前
6秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
qin希望应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
litboy完成签到,获得积分10
9秒前
恩拜尔生物完成签到,获得积分10
11秒前
传奇3应助Cwx2020采纳,获得10
11秒前
11秒前
华仔应助Fury采纳,获得10
11秒前
Katsura发布了新的文献求助10
12秒前
FashionBoy应助十斤芒果采纳,获得10
13秒前
13秒前
14秒前
小生不才完成签到 ,获得积分10
16秒前
18秒前
marinemiao发布了新的文献求助10
18秒前
情怀应助李白采纳,获得10
19秒前
20秒前
20秒前
24秒前
Cwx2020发布了新的文献求助10
25秒前
nn完成签到 ,获得积分10
26秒前
姜建正发布了新的文献求助10
26秒前
顾矜应助科研螺丝采纳,获得10
27秒前
Fury发布了新的文献求助10
27秒前
牧长一完成签到 ,获得积分0
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043