Optimal BIS reference functions for closed-loop induction of anesthesia with propofol

人口 异丙酚 参数统计 功能(生物学) 计算机科学 超调(微波通信) 控制理论(社会学) 医学 数学 统计 麻醉 人工智能 控制(管理) 电信 环境卫生 进化生物学 生物
作者
Ryan T. Jarrett,James L. Blair,Matthew S. Shotwell
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105289-105289 被引量:1
标识
DOI:10.1016/j.compbiomed.2022.105289
摘要

During closed-loop induction of anesthesia a closed-loop system will typically administer propofol to bring a patient to a target depth of hypnosis, or reference point, as quickly as possible while minimizing overshoot. Infusion rates are modified in response to patient feedback to maintain the patient at the reference point. In many cases, rapid inductions may be ideal. In some populations and contexts, however, slower inductions may be preferable and result in better patient outcomes. We introduce a framework for explicitly defining and optimizing clinical outcomes of interest during closed-loop inductions. The central innovation is to replace the traditional fixed reference point with a parametric, time-varying reference function. The parameters of the reference function are then selected to minimize an objective function that encapsulates a clinical goal for the population. We consider as objectives 1) combinations of over- and under-shoot of the target depth of hypnosis, 2) time to stably reach the target, and 3) the amount of propofol administered. By incorporating population variability in the objective function, the resulting reference function defines an optimal dosing protocol for a specific outcome in the target population. We illustrate this approach by simulating closed-loop inductions for a constructed population of synthetic patients. The population is split into training and test sets that are used to identify and evaluate optimal reference functions, respectively. Reference function performance is compared to a standard approach of targeting a fixed reference point, corresponding to a rapid-induction strategy. The outcome of interest was almost always minimized in the test set by use of a reference function with less variability between patients. Our simulations suggest that reference functions can be an effective method of achieving clinical goals when induction speed is not the only priority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
大胆的小懒猪完成签到 ,获得积分10
3秒前
Mindy发布了新的文献求助10
3秒前
笑点低凌蝶发布了新的文献求助200
4秒前
5秒前
skyline发布了新的文献求助10
5秒前
5秒前
文献完成签到 ,获得积分10
6秒前
joker完成签到,获得积分20
7秒前
流北爷发布了新的文献求助10
8秒前
9秒前
卡农完成签到,获得积分10
9秒前
10秒前
晚心发布了新的文献求助10
11秒前
12秒前
14秒前
Owen应助景飞丹采纳,获得10
14秒前
俏皮诺言发布了新的文献求助10
18秒前
18秒前
研友_VZG7GZ应助小木林采纳,获得10
19秒前
娴娴超爱笑完成签到,获得积分10
20秒前
流北爷发布了新的文献求助10
20秒前
活力的烨伟完成签到,获得积分10
21秒前
00完成签到 ,获得积分10
21秒前
晓晓雪发布了新的文献求助10
21秒前
英姑应助秀丽蜜粉采纳,获得10
22秒前
万能图书馆应助陪伴采纳,获得10
22秒前
NexusExplorer应助a378514670采纳,获得10
22秒前
22秒前
24秒前
24秒前
25秒前
26秒前
景飞丹发布了新的文献求助10
26秒前
MJX完成签到,获得积分10
27秒前
核动力驴完成签到,获得积分10
27秒前
orixero应助搞怪绿柳采纳,获得10
28秒前
龙龙完成签到,获得积分20
29秒前
emmaguo713发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673013
求助须知:如何正确求助?哪些是违规求助? 3229005
关于积分的说明 9782988
捐赠科研通 2939355
什么是DOI,文献DOI怎么找? 1610937
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736242