Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP)

神经病理性疼痛 背根神经节 医学 糖尿病 糖尿病神经病变 下调和上调 药理学 周围神经病变 生物信息学 内分泌学 化学 解剖 生物 生物化学 基因
作者
Ranjana Bhandari,Ashmita Sharma,Anurag Kuhad
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:12 被引量:13
标识
DOI:10.3389/fendo.2021.790747
摘要

Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects the distal foot and toes, which then gradually approaches the lower part of the legs. Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus. Long-term diabetes leads to hyperglycemia, which is the utmost contributor to neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium channels in the dorsal root ganglion (DRG) was often observed in models of neuropathic pain. DRG opening frequency increases intracellular sodium ion levels, which further causes increased calcium channel opening and stimulates other pathways leading to diabetic peripheral neuropathy (DPN). Currently, pain due to diabetic neuropathy is managed via antidepressants, opioids, gamma-aminobutyric acid (GABA) analogs, and topical agents such as capsaicin. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. Many factors contribute to this condition, such as lack of specificity and adverse effects such as light-headedness, languidness, and multiple daily doses. Therefore, nanotechnology outperforms in every aspect, providing several benefits compared to traditional therapy such as site-specific and targeted drug delivery. Nanotechnology is the branch of science that deals with the development of nanoscale materials and products, even smaller than 100 nm. Carriers can improve their efficacy with reduced side effects by incorporating drugs into the novel delivery systems. Thus, the utilization of nanotechnological approaches such as nanoparticles, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, gene therapy (siRNA and miRNA), and extracellular vesicles can extensively contribute to relieving neuropathic pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxy发布了新的文献求助10
刚刚
三十发布了新的文献求助10
1秒前
Zyyyh发布了新的文献求助10
3秒前
安详水壶发布了新的文献求助10
4秒前
ding应助Jacey79采纳,获得10
4秒前
英俊的胜完成签到,获得积分10
5秒前
橙橙橙橙橙完成签到,获得积分20
5秒前
6秒前
7秒前
潇洒甜瓜完成签到,获得积分10
7秒前
Soda完成签到,获得积分10
8秒前
9秒前
9秒前
Lucas应助无心的采萱采纳,获得10
10秒前
诸乘风发布了新的文献求助10
10秒前
10秒前
12秒前
廖qingliang发布了新的文献求助10
13秒前
NK.cell完成签到,获得积分10
14秒前
老宇发布了新的文献求助10
14秒前
机灵的千琴完成签到,获得积分10
17秒前
香菜精完成签到,获得积分10
17秒前
汉堡包应助陶醉的手套采纳,获得10
17秒前
Zyyyh完成签到,获得积分10
17秒前
17秒前
执着水杯应助hanlinhong采纳,获得30
18秒前
搜集达人应助卑鄙的熊采纳,获得10
18秒前
彩彩完成签到,获得积分20
19秒前
欧贝斯特发布了新的文献求助10
21秒前
JamesPei应助ljscjth采纳,获得10
22秒前
sansronds完成签到,获得积分10
22秒前
希望天下0贩的0应助guard采纳,获得10
22秒前
22秒前
23秒前
局内人发布了新的文献求助10
23秒前
Ava应助老宇采纳,获得10
25秒前
酷炫的涵菡完成签到,获得积分10
27秒前
Menand驳回了sduwl应助
28秒前
怕孤单的砖头完成签到,获得积分10
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145419
求助须知:如何正确求助?哪些是违规求助? 2796867
关于积分的说明 7821676
捐赠科研通 2453124
什么是DOI,文献DOI怎么找? 1305464
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464