A novel approach to aircraft engine anomaly detection and diagnostics

医学诊断 计算机科学 一致性(知识库) 数据挖掘 异常检测 模糊逻辑 维数之咒 过程(计算) 噪音(视频) 机器学习 维数(图论) 可靠性工程 人工智能 工程类 医学 操作系统 图像(数学) 数学 病理 纯数学
作者
Lijie Yu,Daniel J. Cleary,Paul Cuddihy
标识
DOI:10.1109/aero.2004.1368152
摘要

Accurate and timely failure detection and diagnosis is critical to reliable and affordable aircraft engine operation. This work describes a statistical and fuzzy logic based approach that analyzes multiple engine performance parameters for trend recognition, shift evaluation and failure classification. It integrates the statistical data analysis and fuzzy logic reasoning processes and provides powerful data fusion capability. The system captures and diagnoses failures as soon as the engine performance-shifting trend is recognizable, based on customizable probability. This approach improves upon current diagnostic processes in a number of ways. First, the dimensionality is increased so that multiple relevant parameters are integrated into the diagnosis. This helps reduce single dimension false alarms. Second, this approach effectively handles the noise in engine performance data. Many diagnoses depend on detecting changes in the data that fall within three standard deviations of the pre-event data, historically leading to false alerts and diagnoses. Finally, this approach seamlessly integrates the noise in the data with the uncertainty in the diagnostic models, rolling it up into a single score for each potential diagnosis. This increases consistency, and removes a substantial amount of subjective judgment from the diagnostic process. This approach has been successfully applied to a series of General Electric commercial airline engines, demonstrating high accuracy and consistency. The methodology is expected to be generally applicable to a wide variety of engine models and failure modes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaostou完成签到,获得积分10
2秒前
阿百川完成签到,获得积分10
7秒前
huanhuan发布了新的文献求助10
8秒前
Pamg完成签到 ,获得积分10
8秒前
在水一方应助皮皮采纳,获得10
9秒前
9秒前
vanshaw.vs完成签到,获得积分10
9秒前
9秒前
cocolu应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
南宫迎松应助科研通管家采纳,获得10
11秒前
子夕完成签到 ,获得积分10
12秒前
凶狠的期待完成签到,获得积分10
13秒前
Faith发布了新的文献求助10
13秒前
小鱼发布了新的文献求助10
14秒前
14秒前
Jenny发布了新的文献求助10
15秒前
傲娇皮皮虾完成签到 ,获得积分10
15秒前
15秒前
大模型应助cathy采纳,获得10
17秒前
17秒前
胡辣椒麻鸡完成签到,获得积分10
18秒前
19秒前
铲铲完成签到,获得积分10
20秒前
kk119完成签到,获得积分10
20秒前
wbhou完成签到 ,获得积分10
21秒前
噜噜噜噜噜完成签到,获得积分10
23秒前
-J.e-发布了新的文献求助10
23秒前
可爱的函函应助hxl123采纳,获得10
24秒前
25秒前
25秒前
25秒前
若兰发布了新的文献求助10
29秒前
恶恶么v完成签到,获得积分10
29秒前
wangqing发布了新的文献求助10
30秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083