We report on an efficient route to design large macrocyclic polymers of controlled molar mass and narrow dispersity. The strategy is based on the synthesis of a triblock copolymer ABC, in which the long central block B is extended by two short A and C sequences bearing reactive antagonist functions. When reacted under highly dilute conditions, this precursor produces the corresponding macrocycle by intramolecular coupling of the A and C blocks. Chloroethyl vinyl ether was selected as the monomer for the central block B, because it can be readily derivatized into brushlike polymers by a grafting process. The corresponding macrocyclic brushes were decorated with polystyrene or randomly distributed polystyrene and polyisoprene branches. In a selective solvent for the polyisoprene branches, the macrocyclic brushes self-assemble into cylindrical tubes of up to 700 nanometers.