神经生长因子IB
核出口信号
蛋白激酶B
生物
细胞生物学
磷酸化
PI3K/AKT/mTOR通路
激酶
分子生物学
信号转导
癌症研究
细胞核
核受体
生物化学
转录因子
细胞质
基因
作者
Y-H Han,Xihua Cao,Bingzhen Lin,Feng Lin,Siva K. Kolluri,John L. Stebbins,John C. Reed,Marcia I. Dawson,Zhang Xk
出处
期刊:Oncogene
[Springer Nature]
日期:2006-01-23
卷期号:25 (21): 2974-2986
被引量:139
标识
DOI:10.1038/sj.onc.1209358
摘要
Proapoptotic nuclear receptor family member Nur77 translocates from the nucleus to the mitochondria, where it interacts with Bcl-2 to trigger apoptosis. Nur77 translocation is induced by certain apoptotic stimuli, including the synthetic retinoid-related 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN)/CD437 class. In this study, we investigated the molecular mechanism by which AHPN/CD437 analog (E)-4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC) induces Nur77 nuclear export. Our results demonstrate that 3-Cl-AHPC effectively activated Jun N-terminal kinase (JNK), which phosphorylates Nur77. Inhibition of JNK activation by a JNK inhibitor suppressed 3-Cl-AHPC-induced Nur77 nuclear export and apoptosis. In addition, several JNK upstream activators, including the phorbol ester TPA, anisomycin and MAPK kinase kinase-1 (MEKK1), phosphorylated Nur77 and induced its nuclear export. However, Nur77 phosphorylation by JNK, although essential, was not sufficient for inducing Nur77 nuclear export. Induction of Nur77 nuclear export by MEKK1 required a prolonged MEKK1 activation and was attenuated by Akt activation. Expression of constitutively active Akt prevented MEKK1-induced Nur77 nuclear export. Conversely, transfection of dominant-negative Akt or treatment with a phosphatidylinositol 3-kinase (PI3-K) inhibitor accelerated MEKK1-induced Nur77 nuclear export. Furthermore, mutation of an Akt phosphorylation residue Ser351 in Nur77 abolished the effect of Akt or the PI3-K inhibitor. Together, our results demonstrate that both activation of JNK and inhibition of Akt play a role in translocation of Nur77 from the nucleus to the cytoplasm.
科研通智能强力驱动
Strongly Powered by AbleSci AI