已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hzhniubility完成签到,获得积分10
刚刚
骨科小李完成签到,获得积分10
3秒前
Wry发布了新的文献求助10
4秒前
sunny33发布了新的文献求助10
5秒前
左岸发布了新的文献求助10
5秒前
5秒前
ding应助沉静素采纳,获得10
7秒前
左岸完成签到,获得积分10
11秒前
12秒前
星小完成签到,获得积分10
12秒前
归尘应助贝壳采纳,获得10
14秒前
隐形曼青应助宋宋采纳,获得10
16秒前
16秒前
追寻完成签到,获得积分10
18秒前
19秒前
小雪发布了新的文献求助30
22秒前
qiandi完成签到 ,获得积分10
22秒前
上官若男应助Wry采纳,获得10
23秒前
24秒前
汉皇高祖发布了新的文献求助10
24秒前
25秒前
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
嘿嘿应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得20
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
嘿嘿应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
洁净如音发布了新的文献求助10
29秒前
宋宋发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602961
求助须知:如何正确求助?哪些是违规求助? 4688164
关于积分的说明 14852569
捐赠科研通 4686724
什么是DOI,文献DOI怎么找? 2540360
邀请新用户注册赠送积分活动 1506947
关于科研通互助平台的介绍 1471495