亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kototo完成签到,获得积分10
11秒前
我是老大应助危机的雪旋采纳,获得10
29秒前
Hillson完成签到,获得积分10
30秒前
42秒前
49秒前
1分钟前
日富一日发布了新的文献求助10
1分钟前
zuihaodewomen完成签到 ,获得积分10
2分钟前
Phil完成签到 ,获得积分10
2分钟前
刘天宇完成签到 ,获得积分10
2分钟前
Sue完成签到 ,获得积分10
2分钟前
blueskyzhi完成签到,获得积分10
2分钟前
CodeCraft应助优秀的行云采纳,获得10
3分钟前
ysss0831完成签到,获得积分10
3分钟前
3分钟前
优秀的行云完成签到,获得积分10
3分钟前
zilt1109发布了新的文献求助10
3分钟前
赘婿应助Queena采纳,获得10
3分钟前
3分钟前
3分钟前
jfc完成签到 ,获得积分10
3分钟前
Queena发布了新的文献求助10
3分钟前
鲍惜寒完成签到 ,获得积分20
4分钟前
鲍惜寒发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
Becky完成签到 ,获得积分10
4分钟前
白华苍松发布了新的文献求助20
5分钟前
yhw完成签到,获得积分20
5分钟前
5分钟前
yhw发布了新的文献求助10
5分钟前
开放蓝天应助白华苍松采纳,获得10
5分钟前
Hello应助yhw采纳,获得10
5分钟前
小丸子和zz完成签到 ,获得积分10
5分钟前
JoeyJin完成签到,获得积分10
6分钟前
nuoberry完成签到,获得积分10
6分钟前
夜雨完成签到,获得积分10
6分钟前
花陵完成签到 ,获得积分10
6分钟前
Ethan完成签到,获得积分10
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584659
求助须知:如何正确求助?哪些是违规求助? 4668590
关于积分的说明 14771485
捐赠科研通 4612783
什么是DOI,文献DOI怎么找? 2530133
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499