亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
1秒前
LONG发布了新的文献求助10
5秒前
科目三应助LLL采纳,获得10
5秒前
搜集达人应助1461644768采纳,获得10
9秒前
沧浪完成签到,获得积分10
10秒前
histamin完成签到,获得积分10
10秒前
qiu关闭了qiu文献求助
12秒前
三年两篇以上SCI完成签到 ,获得积分20
15秒前
Criminology34应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
熬夜波比应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
绮罗完成签到 ,获得积分10
24秒前
qiu发布了新的文献求助10
25秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
26秒前
胖胖的江鸟完成签到 ,获得积分10
26秒前
33秒前
诸葛不亮完成签到,获得积分10
33秒前
qiu完成签到,获得积分10
38秒前
布林发布了新的文献求助10
39秒前
王敏娜完成签到 ,获得积分10
40秒前
肥牛完成签到,获得积分10
41秒前
Jasper应助zyy采纳,获得10
42秒前
Jasper应助Shin采纳,获得10
42秒前
menyu完成签到,获得积分10
47秒前
111完成签到,获得积分10
48秒前
49秒前
zsyf完成签到,获得积分10
49秒前
布林完成签到,获得积分20
49秒前
menyu发布了新的文献求助10
51秒前
抚琴祛魅完成签到 ,获得积分10
51秒前
abc完成签到,获得积分10
54秒前
不想起名发布了新的文献求助10
54秒前
57秒前
Vince发布了新的文献求助10
1分钟前
秦时明月完成签到,获得积分10
1分钟前
Jasper应助LONG采纳,获得10
1分钟前
爱笑的无心完成签到 ,获得积分10
1分钟前
tianming完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681194
求助须知:如何正确求助?哪些是违规求助? 5005631
关于积分的说明 15175172
捐赠科研通 4840849
什么是DOI,文献DOI怎么找? 2594550
邀请新用户注册赠送积分活动 1547639
关于科研通互助平台的介绍 1505605