A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:5607
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈梦岚完成签到,获得积分10
1秒前
852应助Jun采纳,获得10
1秒前
3秒前
4秒前
4秒前
4秒前
一针超人发布了新的文献求助10
5秒前
junze完成签到,获得积分10
5秒前
大黑狗完成签到,获得积分20
6秒前
SUE关闭了SUE文献求助
8秒前
板凳发布了新的文献求助50
9秒前
专注的筝发布了新的文献求助10
10秒前
乐乐应助顾台采纳,获得10
11秒前
打打应助James采纳,获得10
11秒前
11秒前
jevon应助zym采纳,获得10
12秒前
善学以致用应助板凳采纳,获得10
16秒前
小二郎应助dsacasd采纳,获得30
16秒前
小樊完成签到,获得积分20
16秒前
17秒前
完美世界应助专注的筝采纳,获得10
19秒前
乐乐应助和谐为上采纳,获得10
20秒前
21秒前
田様应助乌乌采纳,获得10
22秒前
taotao发布了新的文献求助10
24秒前
outman发布了新的文献求助30
24秒前
25秒前
xu先生完成签到,获得积分10
28秒前
29秒前
29秒前
努力鸭完成签到 ,获得积分10
30秒前
30秒前
31秒前
小猫钓鱼发布了新的文献求助10
34秒前
35秒前
36秒前
情怀应助科研小笨猪采纳,获得10
36秒前
cctv18应助笨笨志泽采纳,获得10
37秒前
39秒前
ding应助taotao采纳,获得10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247668
求助须知:如何正确求助?哪些是违规求助? 2890943
关于积分的说明 8265433
捐赠科研通 2559211
什么是DOI,文献DOI怎么找? 1387967
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627505