A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:5607
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
affff完成签到 ,获得积分10
刚刚
HHH完成签到,获得积分10
1秒前
2秒前
Jia发布了新的文献求助10
3秒前
3秒前
老实代曼完成签到,获得积分10
3秒前
饱满一刀发布了新的文献求助10
4秒前
你好发布了新的文献求助10
4秒前
Leo完成签到,获得积分10
4秒前
yeyeyeye完成签到,获得积分10
5秒前
xmf发布了新的文献求助10
5秒前
居选金发布了新的文献求助10
6秒前
彳亍1117应助YDX采纳,获得20
6秒前
汉堡包应助赫尔坤兰采纳,获得10
7秒前
7秒前
星子完成签到,获得积分10
8秒前
彭于晏应助xmf采纳,获得10
8秒前
饱满一刀完成签到,获得积分10
9秒前
燕子发布了新的文献求助10
10秒前
结实的泥猴桃完成签到 ,获得积分10
10秒前
11秒前
芝士发布了新的文献求助10
12秒前
卑微的学牛马完成签到,获得积分10
13秒前
14秒前
蔚欢发布了新的文献求助10
14秒前
共享精神应助快乐的废物采纳,获得10
15秒前
上官若男应助平常的采纳,获得10
15秒前
小当家完成签到,获得积分10
17秒前
小小沙发布了新的文献求助30
18秒前
lsong完成签到,获得积分10
18秒前
CQ完成签到,获得积分10
19秒前
fafafa发布了新的文献求助10
23秒前
Nium完成签到,获得积分10
23秒前
24秒前
彭于晏应助幸福的初晴采纳,获得30
26秒前
hjhhje完成签到,获得积分10
26秒前
传奇3应助青山采纳,获得10
27秒前
标致缘郡完成签到,获得积分20
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963