亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kevin完成签到,获得积分10
1秒前
Benhnhk21完成签到,获得积分10
19秒前
漂亮的秋天完成签到 ,获得积分10
59秒前
yummm完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
核桃应助不安的靖柔采纳,获得10
1分钟前
核桃应助不安的靖柔采纳,获得10
1分钟前
不安的靖柔完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
whj完成签到 ,获得积分10
5分钟前
5分钟前
迟梦琪发布了新的文献求助10
5分钟前
HYQ发布了新的文献求助10
5分钟前
迟梦琪完成签到,获得积分20
5分钟前
三世完成签到 ,获得积分10
5分钟前
gszy1975完成签到,获得积分10
5分钟前
6分钟前
红影完成签到,获得积分10
6分钟前
细腻笑卉发布了新的文献求助20
7分钟前
细腻笑卉完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
feihua1完成签到 ,获得积分10
9分钟前
9分钟前
tranphucthinh发布了新的文献求助10
9分钟前
tranphucthinh完成签到,获得积分10
10分钟前
CodeCraft应助章赛采纳,获得10
11分钟前
11分钟前
SciGPT应助小冯看不懂采纳,获得10
12分钟前
科研通AI5应助羞涩的寒松采纳,获得10
12分钟前
熊熊完成签到 ,获得积分10
12分钟前
12分钟前
12分钟前
12分钟前
章赛发布了新的文献求助10
12分钟前
vivianzzz完成签到,获得积分10
12分钟前
12分钟前
12分钟前
vivianzzz发布了新的文献求助10
12分钟前
李爱国应助vivianzzz采纳,获得10
13分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5127256
求助须知:如何正确求助?哪些是违规求助? 4330378
关于积分的说明 13493304
捐赠科研通 4165925
什么是DOI,文献DOI怎么找? 2283680
邀请新用户注册赠送积分活动 1284704
关于科研通互助平台的介绍 1224683