A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的不二完成签到 ,获得积分10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
邓佳鑫Alan应助科研通管家采纳,获得10
刚刚
刚刚
英姑应助科研通管家采纳,获得10
刚刚
邓佳鑫Alan应助科研通管家采纳,获得10
1秒前
帅气善斓应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
AneyWinter66应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
萌仔完成签到,获得积分10
2秒前
Ava应助sky采纳,获得10
3秒前
4秒前
4秒前
文静的翠彤完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
典雅的彤完成签到,获得积分20
6秒前
6秒前
小二郎应助dfuggh采纳,获得10
6秒前
苏嘉完成签到,获得积分10
7秒前
草丛里的羊驼完成签到,获得积分10
7秒前
wushengdeyu完成签到 ,获得积分10
9秒前
萧一发布了新的文献求助10
9秒前
Tysonqu发布了新的文献求助10
10秒前
pzt发布了新的文献求助10
11秒前
自然的泽浩完成签到 ,获得积分10
11秒前
折柳完成签到 ,获得积分10
12秒前
12秒前
蓝色的梦完成签到,获得积分10
12秒前
独狼完成签到 ,获得积分10
12秒前
董倍儿瘦完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603597
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14854949
捐赠科研通 4694087
什么是DOI,文献DOI怎么找? 2540895
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806