A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
John完成签到 ,获得积分10
刚刚
1秒前
lllxxx发布了新的文献求助10
1秒前
俏皮的龙猫完成签到 ,获得积分10
2秒前
2秒前
木棉哆哆完成签到,获得积分10
2秒前
Lucas应助jack采纳,获得10
2秒前
2秒前
酷炫book发布了新的文献求助10
2秒前
寒江雪发布了新的文献求助10
2秒前
HCQ发布了新的文献求助10
3秒前
3秒前
3秒前
大胆班完成签到,获得积分10
3秒前
小刘同学完成签到,获得积分10
3秒前
3秒前
caocao完成签到,获得积分10
4秒前
4秒前
yin发布了新的文献求助10
4秒前
共享精神应助kyan采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
今后应助HRB采纳,获得10
5秒前
勤恳的猕猴桃完成签到,获得积分10
5秒前
5秒前
5秒前
稳重的千凝完成签到,获得积分10
5秒前
5秒前
123完成签到,获得积分10
5秒前
科研通AI6应助lz123采纳,获得30
5秒前
YU驳回了Ava应助
5秒前
陈锦辞完成签到,获得积分10
6秒前
LIU发布了新的文献求助10
6秒前
今后应助yi采纳,获得10
6秒前
6秒前
6秒前
坚强的钥匙完成签到,获得积分10
6秒前
小雨点完成签到 ,获得积分10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433734
求助须知:如何正确求助?哪些是违规求助? 4546134
关于积分的说明 14201102
捐赠科研通 4466059
什么是DOI,文献DOI怎么找? 2447781
邀请新用户注册赠送积分活动 1438873
关于科研通互助平台的介绍 1415835