A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红衣落花倾城完成签到 ,获得积分10
1秒前
思量博千金完成签到,获得积分10
1秒前
whuhustwit完成签到,获得积分10
2秒前
2秒前
欢喜可愁完成签到 ,获得积分10
3秒前
VelesAlexei完成签到,获得积分10
3秒前
润物无声完成签到,获得积分10
3秒前
木子完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
无情的薯片完成签到,获得积分10
5秒前
荣浩宇完成签到 ,获得积分10
6秒前
6秒前
7秒前
Justtry发布了新的文献求助10
7秒前
随风完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
达尔文完成签到 ,获得积分10
12秒前
hi_traffic完成签到,获得积分10
13秒前
13秒前
freebird完成签到,获得积分10
14秒前
包容的忆灵完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
寒冷尔柳完成签到 ,获得积分10
16秒前
18秒前
jie完成签到 ,获得积分10
18秒前
yywang发布了新的文献求助10
18秒前
小平完成签到 ,获得积分10
19秒前
ROMANTIC完成签到 ,获得积分10
19秒前
mickiller完成签到,获得积分10
20秒前
充电宝应助freebird采纳,获得10
21秒前
David完成签到 ,获得积分10
21秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
21秒前
ATOM完成签到,获得积分20
22秒前
23秒前
小七2022完成签到,获得积分10
24秒前
安详的冷安完成签到,获得积分10
24秒前
CHOU完成签到 ,获得积分10
26秒前
26秒前
小白鞋完成签到 ,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006