清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:6123
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓天宇完成签到,获得积分10
10秒前
杨政远发布了新的文献求助30
18秒前
20秒前
orixero应助幽默的绝悟采纳,获得10
27秒前
杨政远完成签到,获得积分20
31秒前
大水完成签到 ,获得积分10
1分钟前
情怀应助wanyl采纳,获得20
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
kitty777完成签到,获得积分10
2分钟前
qqq完成签到,获得积分10
2分钟前
浚稚完成签到 ,获得积分10
3分钟前
优秀的流沙完成签到,获得积分10
3分钟前
Owen应助Fairy采纳,获得10
3分钟前
千里草完成签到,获得积分10
4分钟前
GingerF应助科研通管家采纳,获得200
4分钟前
大胆的碧菡完成签到,获得积分10
7分钟前
7分钟前
Fairy发布了新的文献求助10
7分钟前
GingerF应助科研通管家采纳,获得150
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
kk完成签到,获得积分10
9分钟前
CipherSage应助kk采纳,获得10
9分钟前
li完成签到 ,获得积分10
10分钟前
两个榴莲完成签到,获得积分0
10分钟前
树洞里的刺猬完成签到,获得积分10
11分钟前
guan完成签到,获得积分10
11分钟前
CHEN完成签到 ,获得积分10
13分钟前
9527完成签到,获得积分10
13分钟前
fabius0351完成签到 ,获得积分10
13分钟前
Nikki发布了新的文献求助30
14分钟前
14分钟前
Nikki完成签到,获得积分10
14分钟前
激动的似狮完成签到,获得积分10
14分钟前
英俊的铭应助活力桃采纳,获得10
14分钟前
tt完成签到,获得积分10
15分钟前
浮游应助科研通管家采纳,获得10
16分钟前
woxinyouyou完成签到,获得积分0
16分钟前
夏木完成签到 ,获得积分10
19分钟前
DBP87弹完成签到 ,获得积分10
20分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5367919
求助须知:如何正确求助?哪些是违规求助? 4495936
关于积分的说明 13996458
捐赠科研通 4400963
什么是DOI,文献DOI怎么找? 2417524
邀请新用户注册赠送积分活动 1410248
关于科研通互助平台的介绍 1385885