清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation

计算机科学 雅卡索引 卷积神经网络 人工智能 分割 深度学习 编码器 图像分割 建筑 模式识别(心理学) 计算机视觉 操作系统 艺术 视觉艺术
作者
Ange Lou,Shuyue Guan,Murray H. Loew
标识
DOI:10.1117/12.2582338
摘要

Recently, deep learning has become much more popular in computer vision applications. The Convolutional Neural Network (CNN) has brought a breakthrough in image segmentation, especially for medical images. In this regard, the UNet is the predominant approach to the medical image segmentation task. The U-Net not only performs well in segmenting multimodal medical images generally, but also in some difficult cases. We found, however, that the classical U-Net architecture has limitations in several respects. Therefore, we applied modifications: 1) designed efficient CNN architecture to replace encoder and decoder, 2) applied residual module to replace skip connection between encoder and decoder to improve, based on the-state-of-the-art U-Net model. Following these modifications, we designed a novel architecture -- DC-UNet, as a potential successor to the U-Net architecture. We created a new effective CNN architecture and built the DC-UNet based on this CNN. We have evaluated our model on three datasets with difficult cases and have obtained a relative improvement in performance of 2.90%, 1.49%, and 11.42% respectively compared with classical UNet. In addition, we used the Tanimoto similarity measure to replace the Jaccard measure for gray-to-gray image comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心每一天完成签到 ,获得积分10
12秒前
16秒前
22秒前
MM发布了新的文献求助10
27秒前
叛逆黑洞完成签到 ,获得积分10
27秒前
43秒前
三心草完成签到 ,获得积分10
57秒前
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
智者雨人完成签到 ,获得积分10
1分钟前
优秀的媚颜完成签到 ,获得积分10
1分钟前
一个爱打乒乓球的彪完成签到 ,获得积分10
1分钟前
英姑应助读书的时候采纳,获得10
1分钟前
酷然完成签到,获得积分10
1分钟前
1分钟前
慕青应助读书的时候采纳,获得150
2分钟前
天真的棉花糖完成签到 ,获得积分10
2分钟前
2分钟前
顾城浪子完成签到,获得积分10
2分钟前
sobergod完成签到 ,获得积分10
2分钟前
輕瘋发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
酷波er应助輕瘋采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
牛马完成签到 ,获得积分10
2分钟前
西山菩提完成签到,获得积分10
2分钟前
Drlee完成签到 ,获得积分10
2分钟前
3分钟前
Marshall完成签到 ,获得积分10
3分钟前
3分钟前
Yidie完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
guan完成签到,获得积分10
3分钟前
桂花载酒少年游完成签到 ,获得积分10
3分钟前
輕瘋发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732639
求助须知:如何正确求助?哪些是违规求助? 5341407
关于积分的说明 15322394
捐赠科研通 4878072
什么是DOI,文献DOI怎么找? 2620935
邀请新用户注册赠送积分活动 1570076
关于科研通互助平台的介绍 1526836