DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation

计算机科学 雅卡索引 卷积神经网络 人工智能 分割 深度学习 编码器 图像分割 建筑 模式识别(心理学) 计算机视觉 操作系统 艺术 视觉艺术
作者
Ange Lou,Shuyue Guan,Murray H. Loew
标识
DOI:10.1117/12.2582338
摘要

Recently, deep learning has become much more popular in computer vision applications. The Convolutional Neural Network (CNN) has brought a breakthrough in image segmentation, especially for medical images. In this regard, the UNet is the predominant approach to the medical image segmentation task. The U-Net not only performs well in segmenting multimodal medical images generally, but also in some difficult cases. We found, however, that the classical U-Net architecture has limitations in several respects. Therefore, we applied modifications: 1) designed efficient CNN architecture to replace encoder and decoder, 2) applied residual module to replace skip connection between encoder and decoder to improve, based on the-state-of-the-art U-Net model. Following these modifications, we designed a novel architecture -- DC-UNet, as a potential successor to the U-Net architecture. We created a new effective CNN architecture and built the DC-UNet based on this CNN. We have evaluated our model on three datasets with difficult cases and have obtained a relative improvement in performance of 2.90%, 1.49%, and 11.42% respectively compared with classical UNet. In addition, we used the Tanimoto similarity measure to replace the Jaccard measure for gray-to-gray image comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助tttp采纳,获得10
刚刚
Duojie发布了新的文献求助10
刚刚
3秒前
cc发布了新的文献求助10
3秒前
Litoivda完成签到 ,获得积分10
3秒前
4秒前
5秒前
6秒前
阳光BOY发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
呆呆完成签到,获得积分10
11秒前
璨澄发布了新的文献求助10
11秒前
13秒前
英姑应助个性的汲采纳,获得10
13秒前
JamesPei应助无敌小汐采纳,获得10
14秒前
FashionBoy应助无敌小汐采纳,获得10
14秒前
Litoivda发布了新的文献求助20
15秒前
激动的萧发布了新的文献求助10
16秒前
18秒前
甜甜凉面发布了新的文献求助10
18秒前
SciGPT应助556677y采纳,获得30
19秒前
能干冬瓜完成签到,获得积分10
20秒前
慕青应助激动的萧采纳,获得10
21秒前
追梦完成签到,获得积分10
23秒前
23秒前
25秒前
pengchengxi完成签到,获得积分20
25秒前
HYT完成签到,获得积分10
26秒前
小青完成签到,获得积分10
27秒前
Orange应助能干冬瓜采纳,获得10
27秒前
充电宝应助拼搏篮球采纳,获得10
28秒前
29秒前
HYT发布了新的文献求助10
29秒前
呆呆发布了新的文献求助10
29秒前
pengchengxi发布了新的文献求助10
30秒前
31秒前
安安安安安ms完成签到,获得积分10
32秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382