A physics-informed deep learning paradigm for car-following models

计算机科学
作者
Zhaobin Mo,Rongye Shi,Xuan Di
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:130: 103240- 被引量:5
标识
DOI:10.1016/j.trc.2021.103240
摘要

Abstract Car-following behavior has been extensively studied using physics-based models, such as Intelligent Driving Model (IDM). These models successfully interpret traffic phenomena observed in the real world but may not fully capture the complex cognitive process of driving. Deep learning models, on the other hand, have demonstrated their power in capturing observed traffic phenomena but require a large amount of driving data to train. This paper aims to develop a family of neural network based car-following models that are informed by physics-based models, which leverage the advantage of both physics-based (being data-efficient and interpretable) and deep learning based (being generalizable) models. We design physics-informed deep learning car-following model (PIDL-CF) architectures encoded with 4 popular physics-based models - the IDM, the Optimal Velocity Model, the Gazis-Herman-Rothery model, and the Full Velocity Difference Model. Acceleration is predicted for 4 traffic regimes: acceleration, deceleration, cruising, and emergency braking. The generalization of PIDL method is further validated using two representative neural network models: the artificial neural networks (ANN) and the long short-term memory (LSTM) model. Two types of PIDL-CF problems are studied, one to predict acceleration only and the other to jointly predict acceleration and discover model parameters. We also demonstrate the superior performance of PIDL with the Next Generation SIMulation (NGSIM) dataset over baselines, especially when the training data is sparse. The results demonstrate the superior performance of neural networks informed by physics over those without.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万柏祺完成签到,获得积分10
刚刚
刚刚
angew2000完成签到,获得积分10
刚刚
zzO完成签到,获得积分10
1秒前
大胆的翠绿完成签到,获得积分10
2秒前
JJ田叶完成签到,获得积分10
2秒前
要减肥香水完成签到,获得积分10
2秒前
CipherSage应助duonicola采纳,获得10
3秒前
ZFW完成签到 ,获得积分10
3秒前
科研通AI2S应助害羞天荷采纳,获得10
4秒前
徐徐徐完成签到,获得积分10
4秒前
清川映叶完成签到,获得积分10
4秒前
JiaGer完成签到,获得积分10
4秒前
暮商完成签到 ,获得积分10
4秒前
一页完成签到,获得积分10
5秒前
靓丽的熠彤完成签到,获得积分10
6秒前
ProfWang完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
Java完成签到,获得积分10
8秒前
掌心化雪完成签到,获得积分10
10秒前
解师发布了新的文献求助10
10秒前
11秒前
TAboo完成签到,获得积分10
11秒前
11秒前
科目三应助zzO采纳,获得10
11秒前
邢夏之完成签到,获得积分10
12秒前
秋梧发布了新的文献求助10
12秒前
PANSIXUAN完成签到,获得积分10
12秒前
nana完成签到,获得积分10
13秒前
15秒前
xingkong发布了新的文献求助10
16秒前
18秒前
19秒前
19秒前
666完成签到,获得积分10
19秒前
55完成签到,获得积分10
20秒前
书记完成签到,获得积分10
20秒前
靓丽行天完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450572
求助须知:如何正确求助?哪些是违规求助? 3046089
关于积分的说明 9004332
捐赠科研通 2734767
什么是DOI,文献DOI怎么找? 1500127
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542