Network-Biased Technical Change: How Modern Digital Collaboration Tools Overcome Some Biases but Exacerbate Others

收入 业务 人际交往 工作(物理) 社交网络(社会语言学) 多样性(政治) 计算机科学 社会资本 营销 知识管理 公共关系 社会学 社会化媒体 心理学 万维网 财务 机械工程 社会心理学 社会科学 人类学 政治学 工程类
作者
Lynn Wu,Gerald C. Kane
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:32 (2): 273-292 被引量:28
标识
DOI:10.1287/orsc.2020.1368
摘要

Using three years’ data from more than 1,000 employees at a large professional services firm, we find that adopting an expertise search tool improves employee work performance in billable revenue, which results from improvements in network connections and information diversity. More importantly, we also find that adoption does not benefit all employees equally. Two types of employees benefit more from adoption of digital collaboration tools than others. First, junior employees and women benefit more from the adoption of digital collaboration tools than do senior employees and men, respectively. These tools help employees overcome the institutional barriers to resource access faced by these employees in their searches for expertise. Second, employees with greater social capital at the time of adoption also benefit more than others. The tools eliminate natural barriers associated with traditional offline interpersonal networks, enabling employees to network even more strategically than before. We explore the mechanisms for these differential benefits. Digital collaboration tools increase the volume of communication more for junior employees and women, indicating greater access to knowledge and expertise than they had before adoption. The tools also decrease the volume of communication for people with greater social capital, indicating more efficient access to knowledge and expertise. An important implication of our findings is that digital collaboration tools have the potential to overcome some of the demographic institutional biases that organizations have long sought to change. It does so, however, at the expense of potentially creating new biases toward network-based features—a characteristic we call “network-biased technical change.”
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elias发布了新的文献求助30
刚刚
RONG完成签到,获得积分10
刚刚
打打应助Zzz采纳,获得10
1秒前
是否跨凤乘龙完成签到,获得积分10
1秒前
3秒前
wanci应助萤火虫采纳,获得10
3秒前
希望天下0贩的0应助RONG采纳,获得10
3秒前
wmm完成签到,获得积分10
3秒前
哈哈哈哈哈哈完成签到 ,获得积分10
4秒前
TWEETY发布了新的文献求助10
4秒前
5秒前
5秒前
稳如老狗完成签到,获得积分10
6秒前
ytx发布了新的文献求助10
7秒前
李爱国应助happyboy2008采纳,获得10
7秒前
香蕉觅云应助lin林希采纳,获得10
7秒前
白啊啊啊啊啊完成签到,获得积分10
7秒前
7秒前
深情安青应助wishe采纳,获得10
7秒前
Mzo完成签到,获得积分10
8秒前
SciGPT应助ahtj采纳,获得10
8秒前
希望天下0贩的0应助11采纳,获得10
9秒前
9秒前
Alex发布了新的文献求助10
9秒前
10秒前
动漫大师发布了新的文献求助20
10秒前
yyzhou完成签到 ,获得积分10
10秒前
华仔应助chenggong采纳,获得10
11秒前
彭于晏应助Mzo采纳,获得10
12秒前
PPRer完成签到,获得积分10
12秒前
Herman_Chen完成签到,获得积分10
13秒前
omyga关注了科研通微信公众号
13秒前
14秒前
14秒前
wanci应助热心的银耳汤采纳,获得10
14秒前
14秒前
14秒前
15秒前
LinXin完成签到,获得积分10
16秒前
louis dai发布了新的文献求助200
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731340
求助须知:如何正确求助?哪些是违规求助? 3275733
关于积分的说明 9993439
捐赠科研通 2991258
什么是DOI,文献DOI怎么找? 1641460
邀请新用户注册赠送积分活动 779824
科研通“疑难数据库(出版商)”最低求助积分说明 748449