Enhancing the stability of organic photovoltaics through machine learning

有机太阳能电池 光伏系统 理论(学习稳定性) 鉴定(生物学) 材料科学 光伏 活动层 计算机科学 能量转换效率 机器学习 人工智能 工艺工程 图层(电子) 纳米技术 工程类 电气工程 薄膜晶体管 生物 植物 光电子学
作者
Tudur Wyn David,Helder Scapin Anizelli,T. Jesper Jacobsson,Cameron Gray,William J. Teahan,Jeff Kettle
出处
期刊:Nano Energy [Elsevier]
卷期号:78: 105342-105342 被引量:47
标识
DOI:10.1016/j.nanoen.2020.105342
摘要

A machine learning approach for extracting information from organic photovoltaic (OPV) solar cell data is presented. A database consisting of 1850 entries of device characteristics, performance and stability data is utilised and a sequential minimal optimisation regression (SMOreg) model is employed as a means of determining the most influential factors governing the solar cell stability and power conversion efficiency (PCE). This is achieved through the analysis of the acquired SMOreg model in terms of the attribute weights. Significantly, the analysis presented allows for identification of materials which could lead to improvements in stability and PCE for each thin film in the device architecture, as well as highlighting the role of different stress factors in the degradation of OPVs. It is found that, for tests conducted under ISOS-L protocols the choice of light spectrum and the active layer material significantly govern the stability, whilst for tests conducted under ISOS-D protocols, the primary attributes are material and encapsulation dependent. The reported approach affords a rapid and efficient method of applying machine learning to enable material identification that possess the best stability and performance. Ultimately, researchers and industries will be able to obtain invaluable information for developing future OPV technologies so that can be realised in a significantly shorter period by reducing the need for time-consuming experimentation and optimisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陌上花开发布了新的文献求助10
1秒前
li完成签到 ,获得积分10
1秒前
YYT完成签到,获得积分10
2秒前
2秒前
36456657应助rory采纳,获得10
3秒前
西风凌月发布了新的文献求助10
3秒前
3秒前
4秒前
柚子发布了新的文献求助10
4秒前
4秒前
英俊的铭应助Liao采纳,获得10
4秒前
5秒前
Elk完成签到,获得积分10
5秒前
5秒前
5秒前
gqb驳回了思源应助
5秒前
5秒前
科研通AI2S应助ccc采纳,获得10
5秒前
乐乐乐乐乐乐应助zpc采纳,获得10
5秒前
6秒前
我是老大应助xl采纳,获得10
6秒前
6秒前
Ll完成签到,获得积分10
7秒前
7秒前
grnn完成签到,获得积分10
7秒前
迅速的小鸽子完成签到 ,获得积分10
8秒前
Elk发布了新的文献求助10
8秒前
brossica发布了新的文献求助10
8秒前
8秒前
8秒前
海洋发布了新的文献求助10
8秒前
hhhhh完成签到,获得积分10
9秒前
FashionBoy应助Darming采纳,获得10
9秒前
9秒前
11完成签到,获得积分10
9秒前
打打应助阳光万声采纳,获得10
10秒前
车沅发布了新的文献求助10
10秒前
YYT发布了新的文献求助10
10秒前
10秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869