高光谱成像
人工智能
计算机科学
杂乱
计算机视觉
BitTorrent跟踪器
直方图
跟踪(教育)
水准点(测量)
模式识别(心理学)
视频跟踪
定向梯度直方图
对象(语法)
眼动
图像(数学)
地理
大地测量学
电信
雷达
教育学
心理学
作者
Fengchao Xiong,Jun Zhou,Jocelyn Chanussot,Yuntao Qian
标识
DOI:10.1109/whispers.2019.8921176
摘要
Traditional color trackers tend to fail in some challenging scenarios such as object deformation, rotation, background clutter and varying illumination. In this paper, we take advantages of the material identification ability of hyperspectral images to tackle the object tracking problem. Abundances and spectral-spatial histogram of oriented gradients (SSHOG) are adopted as material features for tracking. Abundances extract the material distribution by performing dynamic joint online unmixing, in which the temporal information is used to suppress the effect of spectral variability between adjacent frames. SSHOG summarizes the local spectral-spatial oriented gradients to describe the local 3D textures of the target. These features are further embedded to correlation filters, yielding a novel dynamic material-aware tracking (DMT) method. Experimental results on hyperspectral benchmark show the superiority of DMT over other trackers.
科研通智能强力驱动
Strongly Powered by AbleSci AI