Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning

欠定系统 最大值和最小值 计算机科学 稀疏矩阵 背景(考古学) 贝叶斯概率 块(置换群论) 贝叶斯推理 基质(化学分析) 算法 人工智能 机器学习 数学 数学分析 古生物学 物理 几何学 材料科学 量子力学 生物 复合材料 高斯分布
作者
Zhilin Zhang,Bhaskar D. Rao
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:5 (5): 912-926 被引量:810
标识
DOI:10.1109/jstsp.2011.2159773
摘要

We address the sparse signal recovery problem in the context of multiple measurement vectors (MMV) when elements in each nonzero row of the solution matrix are temporally correlated. Existing algorithms do not consider such temporal correlations and thus their performance degrades significantly with the correlations. In this work, we propose a block sparse Bayesian learning framework which models the temporal correlations. In this framework we derive two sparse Bayesian learning (SBL) algorithms, which have superior recovery performance compared to existing algorithms, especially in the presence of high temporal correlations. Furthermore, our algorithms are better at handling highly underdetermined problems and require less row-sparsity on the solution matrix. We also provide analysis of the global and local minima of their cost function, and show that the SBL cost function has the very desirable property that the global minimum is at the sparsest solution to the MMV problem. Extensive experiments also provide some interesting results that motivate future theoretical research on the MMV model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
忧郁凌波完成签到,获得积分10
2秒前
bkagyin应助电灯胆采纳,获得10
2秒前
2秒前
amber发布了新的文献求助10
2秒前
iris601完成签到,获得积分10
3秒前
汉堡完成签到 ,获得积分10
4秒前
4秒前
4秒前
一颗星发布了新的文献求助10
7秒前
9秒前
amber完成签到,获得积分10
10秒前
科研小白发布了新的文献求助10
10秒前
追风少年发布了新的文献求助10
10秒前
背后代柔发布了新的文献求助10
10秒前
香蕉觅云应助llaviner采纳,获得30
11秒前
11秒前
SSSSSSSSH完成签到,获得积分10
12秒前
科研通AI6应助移花宫甲采纳,获得10
12秒前
陈末应助sc采纳,获得10
12秒前
脑洞疼应助愿祖国富强采纳,获得10
12秒前
14秒前
16秒前
667788发布了新的文献求助10
16秒前
16秒前
16秒前
爆米花应助llaviner采纳,获得10
17秒前
李爱国应助活泼的飞双采纳,获得10
18秒前
科研小白完成签到,获得积分10
19秒前
19秒前
19秒前
lsw发布了新的文献求助10
20秒前
QingMRI发布了新的文献求助30
20秒前
量子星尘发布了新的文献求助10
21秒前
起床做核酸完成签到,获得积分10
21秒前
22秒前
田様应助向浩采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430640
求助须知:如何正确求助?哪些是违规求助? 4543688
关于积分的说明 14188578
捐赠科研通 4462030
什么是DOI,文献DOI怎么找? 2446377
邀请新用户注册赠送积分活动 1437761
关于科研通互助平台的介绍 1414490