Lasso(编程语言)
风格(视觉艺术)
生活方式
人工智能
计算机科学
操作员(生物学)
选择(遗传算法)
人口
机器学习
国家(计算机科学)
算法
心理学
医学
应用心理学
环境卫生
基因
历史
万维网
转录因子
抑制因子
考古
化学
生物化学
作者
Guang Shi,Zhen Chen,Shigehiko Kanaya,Md. Altaf-UI-Amin,Naoaki Ono,Ming Huang
出处
期刊:2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech)
日期:2021-03-09
被引量:1
标识
DOI:10.1109/lifetech52111.2021.9391897
摘要
The body constitutions (BCs) of traditional Chinese medical theory are predicted through machine learning algorithms in this work. On the basis of the original questionnaire including 258 life-style features, the least absolute shrinkage and selection operator (LASSO) algorithm is employed for predicting the BCs over the population of 851 persons. Moreover, the principle features (PFs) of life-style are identified to recover the biased BCs into the gentle constitutions as the health guidance. Compared to the state-of-art works, the prediction accuracy is improved by 29% and the amount of identified PFs is reduced to 66.7%.
科研通智能强力驱动
Strongly Powered by AbleSci AI