Predicting haemodynamic significance of coronary stenosis with radiomics-based pericoronary adipose tissue characteristics

医学 部分流量储备 无线电技术 冠状动脉疾病 狭窄 接收机工作特性 放射科 血流动力学 曲线下面积 内科学 心脏病学 血管造影 冠状动脉 动脉 冠状动脉造影 心肌梗塞
作者
Didi Wen,Z. Xu,Rui An,Jialiang Ren,Yibin Jia,J. Li,Minjuan Zheng
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (2): e154-e161 被引量:15
标识
DOI:10.1016/j.crad.2021.10.019
摘要

To investigate the diagnostic performance of the radiomics features of pericoronary adipose tissue (PCAT) in determining haemodynamically significant coronary artery stenosis as evaluated by fractional flow reserve (FFR).A total of 92 patients with clinically suspected coronary artery disease who underwent coronary computed tomography (CT) angiography (CCTA), invasive coronary angiography (ICA), and FFR examination within 1 month were included retrospectively, and 121 lesions were randomly assigned to the training and testing set. Based on manual segmentation of PCAT, 1,116 radiomics features were computed. After radiomics robustness assessment and feature selection, radiomics models were established using the different machine-learning algorithms. The area under the receiver operating characteristic (ROC) curve (AUC) and net reclassification index (NRI) were analysed to compare the discrimination and reclassification abilities of radiomics models.Two radiomics features were selected after exclusions, and both were significantly higher in coronary arteries with FFR ≤0.8 than those with FFR >0.8. ROC analysis showed that the combination of CCTA and decision tree radiomics model achieved significantly higher diagnostic performance (AUC: 0.812) than CCTA alone (AUC: 0.599, p=0.015). Furthermore, the NRI of the combined model was 0.820 and 0.775 in the training and testing sets, respectively, suggesting the radiomics features of PCAT had were effective in classifying the haemodynamic significance of coronary stenosis.Adding PCAT radiomics features to CCTA enabled identification of haemodynamically significant coronary artery stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青菜发布了新的文献求助10
刚刚
8R60d8应助雪花落在丛林采纳,获得10
1秒前
Andy发布了新的文献求助10
2秒前
星辰大海应助射天狼采纳,获得10
3秒前
4秒前
4秒前
YYYYWZ完成签到,获得积分10
5秒前
英姑应助一二一采纳,获得10
5秒前
5秒前
lll发布了新的文献求助10
7秒前
所所应助18746005898采纳,获得10
7秒前
Migue发布了新的文献求助10
8秒前
sirius完成签到,获得积分10
8秒前
严昌完成签到,获得积分20
8秒前
HIT_C完成签到 ,获得积分10
9秒前
ff完成签到,获得积分10
10秒前
cxr发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
四川知名猛男完成签到 ,获得积分10
16秒前
瑞瑞发布了新的文献求助10
16秒前
lll完成签到,获得积分20
17秒前
cxr完成签到,获得积分10
17秒前
粗暴的醉卉完成签到,获得积分10
17秒前
酷酷碧发布了新的文献求助30
17秒前
快乐应助zyc采纳,获得10
18秒前
丘比特应助xuuuuumin采纳,获得10
23秒前
WSR完成签到 ,获得积分10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
回到原点应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
25秒前
修仙应助科研通管家采纳,获得10
25秒前
25秒前
修仙应助科研通管家采纳,获得10
25秒前
25秒前
爱静静应助一颗树采纳,获得10
25秒前
ymj发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919