Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects

机器学习 人工智能 计算机科学 人气 深度学习 领域(数学) 计算模型 预测建模 抗癌药物 比例(比率) 癌症 社会心理学 医学 物理 内科学 量子力学 纯数学 数学 心理学
作者
Kunjie Fan,Lijun Cheng,Lang Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:11
标识
DOI:10.1093/bib/bbab271
摘要

Abstract Drug combinations have exhibited promising therapeutic effects in treating cancer patients with less toxicity and adverse side effects. However, it is infeasible to experimentally screen the enormous search space of all possible drug combinations. Therefore, developing computational models to efficiently and accurately identify potential anti-cancer synergistic drug combinations has attracted a lot of attention from the scientific community. Hypothesis-driven explicit mathematical methods or network pharmacology models have been popular in the last decade and have been comprehensively reviewed in previous surveys. With the surge of artificial intelligence and greater availability of large-scale datasets, machine learning especially deep learning methods are gaining popularity in the field of computational models for anti-cancer drug synergy prediction. Machine learning-based methods can be derived without strong assumptions about underlying mechanisms and have achieved state-of-the-art prediction performances, promoting much greater growth of the field. Here, we present a structured overview of available large-scale databases and machine learning especially deep learning methods in computational predictive models for anti-cancer drug synergy prediction. We provide a unified framework for machine learning models and detail existing model architectures as well as their contributions and limitations, shedding light into the future design of computational models. Besides, unbiased experiments are conducted to provide in-depth comparisons between reviewed papers in terms of their prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
红绿灯的黄发布了新的文献求助200
1秒前
ccy2023完成签到,获得积分10
3秒前
畅快傲菡完成签到,获得积分10
4秒前
5秒前
燕儿完成签到,获得积分10
5秒前
TOBEY发布了新的文献求助10
6秒前
王科长发布了新的文献求助10
8秒前
AlexLee发布了新的文献求助10
16秒前
Vxxxx发布了新的文献求助10
17秒前
大气的火龙果完成签到 ,获得积分10
20秒前
小蘑菇发布了新的文献求助10
20秒前
wbgwudi完成签到,获得积分10
21秒前
小米完成签到,获得积分10
21秒前
medlive2020发布了新的文献求助10
23秒前
健忘怜雪完成签到,获得积分10
25秒前
学呀学完成签到 ,获得积分10
25秒前
26秒前
ding应助进击的小白菜采纳,获得10
26秒前
令狐冲完成签到,获得积分10
26秒前
乐乐应助萧七七采纳,获得10
28秒前
28秒前
28秒前
逝月完成签到,获得积分10
28秒前
30秒前
31秒前
和谐谷蕊完成签到,获得积分10
31秒前
典雅的俊驰应助medlive2020采纳,获得10
33秒前
33秒前
36456657应助小于采纳,获得10
34秒前
Tetmqq发布了新的文献求助200
35秒前
Lucas应助0美团外卖0采纳,获得10
36秒前
lydiaabc发布了新的文献求助10
36秒前
心静如水完成签到,获得积分20
37秒前
大大大大黄完成签到,获得积分10
37秒前
39秒前
机智的嘎完成签到,获得积分10
40秒前
程佳慧应助gggyyy采纳,获得10
40秒前
40秒前
qq发布了新的文献求助10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357900
求助须知:如何正确求助?哪些是违规求助? 2981179
关于积分的说明 8698120
捐赠科研通 2662810
什么是DOI,文献DOI怎么找? 1458085
科研通“疑难数据库(出版商)”最低求助积分说明 674984
邀请新用户注册赠送积分活动 666014