Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects

机器学习 人工智能 计算机科学 人气 深度学习 领域(数学) 计算模型 预测建模 抗癌药物 比例(比率) 癌症 社会心理学 医学 物理 内科学 量子力学 纯数学 数学 心理学
作者
Kunjie Fan,Lijun Cheng,Lang Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:11
标识
DOI:10.1093/bib/bbab271
摘要

Abstract Drug combinations have exhibited promising therapeutic effects in treating cancer patients with less toxicity and adverse side effects. However, it is infeasible to experimentally screen the enormous search space of all possible drug combinations. Therefore, developing computational models to efficiently and accurately identify potential anti-cancer synergistic drug combinations has attracted a lot of attention from the scientific community. Hypothesis-driven explicit mathematical methods or network pharmacology models have been popular in the last decade and have been comprehensively reviewed in previous surveys. With the surge of artificial intelligence and greater availability of large-scale datasets, machine learning especially deep learning methods are gaining popularity in the field of computational models for anti-cancer drug synergy prediction. Machine learning-based methods can be derived without strong assumptions about underlying mechanisms and have achieved state-of-the-art prediction performances, promoting much greater growth of the field. Here, we present a structured overview of available large-scale databases and machine learning especially deep learning methods in computational predictive models for anti-cancer drug synergy prediction. We provide a unified framework for machine learning models and detail existing model architectures as well as their contributions and limitations, shedding light into the future design of computational models. Besides, unbiased experiments are conducted to provide in-depth comparisons between reviewed papers in terms of their prediction performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徒弟的师傅完成签到,获得积分10
刚刚
Orange应助健忘的寒荷采纳,获得10
刚刚
1秒前
2秒前
晁子枫发布了新的文献求助10
2秒前
2秒前
2秒前
夜半芜凉发布了新的文献求助10
3秒前
李健的小迷弟应助sadd采纳,获得10
4秒前
科研白发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
务实的惜寒完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
张志迪发布了新的文献求助10
6秒前
zenzi发布了新的文献求助10
6秒前
随缘来一个吧完成签到 ,获得积分10
6秒前
6秒前
6秒前
和谐碧琴发布了新的文献求助10
7秒前
优雅盼海完成签到,获得积分10
8秒前
8秒前
悟空发布了新的文献求助30
9秒前
Jared应助科研通管家采纳,获得10
9秒前
9秒前
asd应助科研通管家采纳,获得30
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
tiptip应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
zgrmws应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002