Radar Waveform Design Based on Multi-Agent Reinforcement Learning

波形 强化学习 计算机科学 雷达 钢筋 相互信息 人工智能 功率(物理) 机器学习 算法 电信 工程类 物理 结构工程 量子力学
作者
Qingpei Yang,Zhuangzhi Han,Han Wang,Jian Dong,Zhao Yang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:35 (10): 2159035-2159035 被引量:3
标识
DOI:10.1142/s0218001421590357
摘要

Under the actual combat background, prior information on radar targets has great uncertainty. The waveform designed based on prior information does not meet the requirements for the estimation of parameter. Thus, an algorithm for designing a waveform based on reinforcement learning is proposed to solve the above-mentioned problem. The problem on radar target parameter estimation is modeled as a framework for multi-agent reinforcement learning. Each frequency band acts as an agent, collectively interacts with the environment, independently receives observation results, shares rewards, and constantly updates the Q-network. The results of the simulation experiments indicate that the algorithm exhibits a significant improvement in terms of the mutual information obtained using the water injection method. In the case of simulation experiment, the SINR of the waveform designed based on multi-agent reinforcement learning is more than 3[Formula: see text]dB higher than that of LFM waveform. Under the condition of different time width and power, the mutual information obtained by the algorithm is better than that of water injection method. Moreover, such algorithm is also found to effectively improve the parameter estimation performance of target detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
刚刚
1111111发布了新的文献求助10
刚刚
刚刚
元谷雪应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
Dali应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Frank应助科研通管家采纳,获得10
刚刚
丘比特应助wao采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
lu完成签到,获得积分10
1秒前
沉静的妍完成签到,获得积分10
2秒前
发呆员发布了新的文献求助10
2秒前
2秒前
沉默是金发布了新的文献求助10
2秒前
3秒前
LH完成签到,获得积分10
3秒前
搜集达人应助SUNYAOSUNYAO采纳,获得10
3秒前
启程牛牛发布了新的文献求助10
3秒前
CipherSage应助lzx采纳,获得10
4秒前
无助的考拉完成签到,获得积分10
4秒前
4秒前
上官若男应助xttju2014采纳,获得10
4秒前
今天也要加油鸭完成签到,获得积分10
5秒前
求助人员应助az采纳,获得30
5秒前
5秒前
ding应助daladidala采纳,获得10
6秒前
gaoyankai发布了新的文献求助10
6秒前
寒冷又晴发布了新的文献求助10
6秒前
6秒前
6秒前
酱酱完成签到,获得积分10
7秒前
桐桐应助momo采纳,获得10
7秒前
8秒前
勿忘心安发布了新的文献求助10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584104
求助须知:如何正确求助?哪些是违规求助? 4667626
关于积分的说明 14768874
捐赠科研通 4610007
什么是DOI,文献DOI怎么找? 2529583
邀请新用户注册赠送积分活动 1498629
关于科研通互助平台的介绍 1467267