Adversarial Affine Registration for Real-Time Intraoperative Registration of 3-D US-US for Brain Shift Correction

鉴别器 基本事实 相似性(几何) 图像配准 相似性度量 计算机科学 人工智能 推论 转化(遗传学) 仿射变换 度量(数据仓库) 发电机(电路理论) 计算机视觉 对象(语法) 模式识别(心理学) 图像(数学) 数据挖掘 探测器 数学 功率(物理) 物理 化学 纯数学 基因 电信 量子力学 生物化学
作者
Marek Wodziński,Andrzej Skalski
出处
期刊:Lecture Notes in Computer Science 卷期号:: 75-84 被引量:2
标识
DOI:10.1007/978-3-030-87583-1_8
摘要

One of the most frequent tumors in the central nervous system is glioma. The high-grade gliomas grow relatively fast and eventually lead to death. The tumor resection improves the survival rate. However, an accurate image-guidance is necessary during the surgery. The problem may be addressed by image registration. There are three main challenges: (i) the registration must be performed in real-time, (ii) the tumor resection results in missing data that strongly influence the similarity measure, and (iii) the quality of ultrasonography images. In this work, we propose a solution based on generative adversarial networks. The generator network calculates the affine transformation while the discriminator network learns the similarity measure. The ground-truth for the discriminator is defined by calculating the best possible affine transformation between the anatomical landmarks. This approach allows real-time registration during the inference and does not require defining the similarity measure that takes into account the missing data. The work is evaluated using the RESECT database. The dataset consists of 17 US-US pairs acquired before, during, and after the surgery. The target registration error is the main evaluation criteria. We show that the proposed method achieves results comparable to the state-of-the-art while registering the images in real-time. The proposed method may be useful for the real-time intraoperative registration addressing the brain shift correction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiannv完成签到,获得积分10
刚刚
我不爱池鱼应助3636采纳,获得20
刚刚
名侦探柯基完成签到,获得积分10
1秒前
1秒前
张zhang完成签到,获得积分10
1秒前
2秒前
2秒前
nihaku发布了新的文献求助10
2秒前
wxy发布了新的文献求助10
4秒前
4秒前
lani完成签到 ,获得积分10
5秒前
5秒前
内向忆南发布了新的文献求助10
5秒前
落后乐荷完成签到,获得积分10
5秒前
一一发布了新的文献求助30
6秒前
7秒前
nihaku完成签到,获得积分10
8秒前
鸭鸭发布了新的文献求助10
8秒前
橘柚完成签到,获得积分10
8秒前
DrJiang完成签到,获得积分10
8秒前
天天快乐应助queer采纳,获得10
8秒前
9秒前
张三发布了新的文献求助10
9秒前
9秒前
自由赛风完成签到 ,获得积分10
10秒前
高佳智发布了新的文献求助20
10秒前
今后应助雪糕采纳,获得10
10秒前
英姑应助悲伤汉堡包采纳,获得10
10秒前
蓝天发布了新的文献求助10
11秒前
喜悦夏彤发布了新的文献求助10
12秒前
精明冬莲发布了新的文献求助10
13秒前
鸭鸭完成签到,获得积分10
13秒前
哎嘿完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
有机者完成签到 ,获得积分10
14秒前
zy完成签到,获得积分10
15秒前
15秒前
Green发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601020
求助须知:如何正确求助?哪些是违规求助? 4686584
关于积分的说明 14845029
捐赠科研通 4679502
什么是DOI,文献DOI怎么找? 2539154
邀请新用户注册赠送积分活动 1506042
关于科研通互助平台的介绍 1471253