作者
Margaret E. Brousseau,Kevin B. Clairmont,Glen Spraggon,Alec N. Flyer,Andrei A. Golosov,Philipp Grosche,Jakal Amin,Jérôme André,Debra Burdick,Shari L. Caplan,Guanjing Chen,Raj Chopra,Lisa Ames,Diana Dubiel,Li Fan,Raphael Gattlen,Dawn Kelly-Sullivan,Alexander Koch,Ian Lewis,Jingzhou Li,Eugene Liu,Danuta Lubicka,Andreas L. Marzinzik,Katsumasa Nakajima,David O. Nettleton,Johannes Ottl,Meihui Pan,Tajesh Patel,Lauren M. Perry,Stephanie Pickett,Jennifer Poirier,Patrick Reid,Xavier Pellé,Mohindra Seepersaud,Vanitha Subramanian,Victoria Vera,Mei Xu,Lihua Yang,Qing Yang,Jinghua Yu,Guoming Zhu,Lauren G. Monovich
摘要
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDLR) degradation. Therapeutic antibodies that disrupt PCSK9-LDLR binding reduce LDL-C concentrations and cardiovascular disease risk. The epidermal growth factor precursor homology domain A (EGF-A) of the LDLR serves as a primary contact with PCSK9 via a flat interface, presenting a challenge for identifying small molecule PCSK9-LDLR disruptors. We employ an affinity-based screen of 1013in vitro-translated macrocyclic peptides to identify high-affinity PCSK9 ligands that utilize a unique, induced-fit pocket and partially disrupt the PCSK9-LDLR interaction. Structure-based design led to molecules with enhanced function and pharmacokinetic properties (e.g., 13PCSK9i). In mice, 13PCSK9i reduces plasma cholesterol levels and increases hepatic LDLR density in a dose-dependent manner. 13PCSK9i functions by a unique, allosteric mechanism and is the smallest molecule identified to date with in vivo PCSK9-LDLR disruptor function.