Can automated machine translation evaluation metrics be used to assess students’ interpretation in the language learning classroom?

计算机科学 机器翻译 NIST公司 自然语言处理 人工智能 操作化 人气 机器翻译评价 语言习得 分级(工程) 公制(单位) 能力(人力资源) 数学教育 心理学 机器翻译软件可用性 社会心理学 哲学 运营管理 土木工程 认识论 基于实例的机器翻译 工程类 经济
作者
Chao Han,Xiaolei Lu
出处
期刊:Computer Assisted Language Learning [Routledge]
卷期号:36 (5-6): 1064-1087 被引量:16
标识
DOI:10.1080/09588221.2021.1968915
摘要

The use of translation and interpreting (T&I) in the language learning classroom is commonplace, serving various pedagogical and assessment purposes. Previous utilization of T&I exercises is driven largely by their potential to enhance language learning, whereas the latest trend has begun to underscore T&I as a crucial skill to be acquired as part of transcultural competence for language learners and future language users. Despite their growing popularity and utility in the language learning classroom, assessing T&I is time-consuming, labor-intensive and cognitively taxing for human raters (e.g., language teachers), primarily because T&I assessment entails meticulous evaluation of informational equivalence between the source-language message and target-language renditions. One possible solution is to rely on automated quality metrics that are originally developed to evaluate machine translation (MT). In the current study, we investigated the viability of using four automated MT evaluation metrics, BLEU, NIST, METEOR and TER, to assess human interpretation. Essentially, we correlated the automated metric scores with the human-assigned scores (i.e., the criterion measure) from multiple assessment scenarios to examine the degree of machine-human parity. Overall, we observed fairly strong metric-human correlations for BLEU (Pearson's r = 0.670), NIST (r = 0.673) and METEOR (r = 0.882), especially when the metric computation was conducted on the sentence level rather than the text level. We discussed these emerging findings and others in relation to the feasibility of operationalizing MT metrics to evaluate students' interpretation in the language learning classroom.Supplemental data for this article is available online at https://doi.org/10.1080/09588221.2021.1968915 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张利双发布了新的文献求助10
刚刚
1661321476完成签到,获得积分10
4秒前
专注的胡萝卜完成签到 ,获得积分10
5秒前
CipherSage应助小囡同学采纳,获得10
5秒前
Wu完成签到,获得积分10
6秒前
yinjq777完成签到,获得积分10
6秒前
6秒前
隐形曼青应助Jenny采纳,获得10
7秒前
糊涂的不尤完成签到 ,获得积分10
8秒前
怡然剑成完成签到 ,获得积分10
8秒前
吟賞烟霞完成签到,获得积分10
8秒前
8秒前
bound完成签到 ,获得积分20
9秒前
赖建琛完成签到 ,获得积分10
10秒前
17381362015发布了新的文献求助10
10秒前
谢丹完成签到 ,获得积分10
10秒前
wish完成签到 ,获得积分10
11秒前
Brooks完成签到,获得积分10
12秒前
和谐乌龟发布了新的文献求助10
12秒前
替我活着发布了新的文献求助10
12秒前
13秒前
drew发布了新的文献求助30
13秒前
潇潇完成签到,获得积分10
13秒前
科研通AI2S应助响铃采纳,获得10
13秒前
要好好看文献应助青菜采纳,获得30
15秒前
搜集达人应助modesty采纳,获得10
16秒前
李爱国应助淡然的糖豆采纳,获得10
16秒前
梁33完成签到,获得积分10
17秒前
潇潇发布了新的文献求助10
17秒前
18秒前
花Cheung完成签到,获得积分10
18秒前
开心尔芙发布了新的文献求助10
18秒前
yummy完成签到,获得积分10
18秒前
十三完成签到 ,获得积分10
18秒前
LZJ完成签到,获得积分10
19秒前
和谐乌龟完成签到,获得积分10
20秒前
guanzhuang完成签到,获得积分10
21秒前
大神水瓶座完成签到,获得积分10
21秒前
能干的函发布了新的文献求助10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965897
求助须知:如何正确求助?哪些是违规求助? 3511264
关于积分的说明 11157003
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793159
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278